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1 Abstract

This paper discusses the Elliptically Weighted Average (EWA) filtering al-
gorithm along with enhancements that further increase image quality. We
derive all the mathematical results that are needed in the algorithm and gen-
eralize the algorithm as follows. First, we allow filters with varying radii of
support. Second, we propose a technique to embed differing filters for the
minification and magnification. This enhances the image quality by allowing
to use those filters in reconstruction that do not create excessive blurring on
magnification. The transition between filters is made invisible by linearly
interpolating between the filters. The original EWA algorithm is recovered
by setting both filters to a Gaussian filter with radius 1. Third, our deriva-
tions are coordinate-free which we believe is the best representation for the
formulae in the algorithm. This also enables generalizing the algorithm to
higher dimensions (e.g. filtering voxel data in 3d), although this would be
very costly. We shall demonstrate that using a filter radius of 1 for the gaus-
sian filter as in the original EWA filtering algorithm leads to artifacts when
magnifying.

2 Aliasing

EWA filtering was developed by Heckbert and Greene [1] [2]. It is one of
the highest quality filtering techniques that are practical for image warping.
The need for filtering can be seen from Figure 1a which shows a checker-
board viewed in perspective, with severe aliasing artifacts. Figure 1b shows
the same image with proper filtering using the enhanced EWA filtering as
desribed in this paper.

In principle we visualize there being an image function I : R2 → Color
that maps positions on the image plane to colors. This function can be
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(a) No filtering (b) Enhanced EWA filtering

Figure 1: An example of aliasing and antialiasing.

arbitrary and it is not uncommon for the function to have frequency content
extending to infinity. Examples of this kind of frequency content are sharp
edges and a checkerboard pattern extending infinitely to the horizon. To
show this continuous image on the computer screen, we can only use a finite
amount of pixels to represent it. This means that there is an upper limit
to the frequency content that can be displayed on the screen. On the other
hand, the sampling theorem from signal processing theory tells us that to
reconstruct a continuous function f from point samples of f arranged on a
regular grid we need a sampling frequency F that is at least twice the highest
frequency in f . This F is known as the Nyquist limit. Since we know that in
some cases the image’s maximum frequency tends towards infinite, we can
be assured that there is in general no way to represent images on the display
in their original form.

Naive point sampling of the image function with a sampling frequency
below the Nyquist limit results in an artifact called aliasing, which Figure
1a demonstrates. When the continuous function is reconstructed from these
point samples, the function can be significantly different from the original
one: aliasing causes the higher frequencies to sum up to the lower frequencies.
Since the result of aliasing is in general meaningless noise, we would like
to avoid it. This is done by removing the higher frequencies of the image
function before point sampling it. This process is called anti-aliasing or
filtering, an example of which can be seen in Figure 1b.

Rather than considering the problem in its all generality, the approach
usually taken in computer graphics is to isolate the sources of aliasing and
handle these cases specially. An example of such an approach is when we
wish to warp an image (called a texture) on the screen. Such image warps
are responsible for much of the high frequency content in computer generated
imagery. Fortunately they can be anti-aliased very efficiently as we shall see.
The additional information we have here is that the data is itself of finite
frequency. It is the image warp which causes the possible higher frequencies
in the screen image function.
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3 Texture antialiasing

Let us define an image warping function f as an arbitrary C1-diffeomorphism
from the texture space to the screen space. What this means is simply that f
is continuous, invertible, differentiable, and that its inverse f−1 is all of these
too. When rendering the warped texture on the screen, one usually loops over
the screen pixels (x, y) and uses the inverse warp f−1 to get to the texture
space to find out the color for the pixel. Naively one could take this color to
be the texture pixel (texel) nearest to (u, v) = f−1(x, y). However, as dis-
cussed above, this approach leads to aliasing. Rather, the approach usually
taken is to consider an infinitesimally small point set around the sampling
point. In this set, the inverse image warping function f−1 looks like a plane (a
simple affine function) which can be completely described by the two partial
derivative vectors at that point. This observation is extended as an approx-
imation over the finite area of a single screen pixel. This approximation is
called a local affine (linear) approximation and is a recurrent theme when
considering problems containing non-affine (non-linear) functions. Strictly
speaking, pixels do not have an area since they are point samples. More
formally then, by the ’area’ of the pixel we mean the support set of the pixel
filter (the collection of those points that map to non-zero values under the
filter) that is used to filter the screen image function.

Because, in general, filtering in continuous space does not have a closed
form solution, and the computer can’t be used to actually compute results
in a continuous space, we need to somehow convert the filtering problem to
a discrete one. The way to do this in this case is to inverse warp the pixel
filter to the texture space with f−1. However, instead of using the f−1 itself,
we will use it’s local affine approximation at that point. This way the pixel
filter ends up being transformed by an affine transformation.

4 EWA algorithm

In addition to the local affine approximation, the EWA algorithm is based on
the assumption that the filtering of the screen image function is done with
a radially symmetric filter. Such a radially symmetric filter necessarily has
a circular support: thus the pixel ’area’ is circular. If we now transform the
filter to the texture space using the inverse of the local affine transforma-
tion, we necessarily end up with an ellipse. This explains the name of the
algorithm. We can now easily describe the algorithm:

1. Find out the bounding box B of the ellipse E in the texture space.
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2. Loop over the texels in B. If the texel is contained in E, multiply the
texel value with the filter value and add the result to a running sum
named ’imageSum’. In addition, keep up a running sum of the filter
weights named ’weightSum’.

3. Return ’imageSum / weightSum’.

Note that the texture is thought to be extended to infinity by some exten-
sion mechanism. That is, if the texel is physically outside the texture stored
in the memory, one chooses some texel in the texture according to some
preferred strategy. The common ones include choosing the closest boundary
texel, returning some fixed value, tiling the texture repeatedly, and tiling the
texture by successive mirroring.

Two problems immediately arise. First, the affine transformation can
expand the filter support without a limit: this is what happens when the
texture is viewed at increasing distances. While object sizes decrease, the
work we do for the filtering increases. We would like the filtering to always
be a constant time operation. Second, the affine transformation can shrink
the filter support without a limit making the ellipse fall between texels: this
is what happens when the texture is viewed at increasing magnifications.
This is because we haven’t yet taken into account the reconstruction of the
texture function. We would like to include the effect of the reconstruction
filter to the antialiasing filter. After this, the ellipse always intersects some
texels. We shall later give solutions to both of these problems.

What follows is the derivation of the computation of the bounding box,
and the derivation of the forward differences that are used to effectively trace
where we are with respect to the ellipse.

5 Implicit representation of ellipsoids

We will be working with origin-centered ellipsoids in Rn. We define an origin-
centered ellipsoid as an invertible linear transform of an origin-centered unit
sphere. From now on we will leave the ’origin-centered’ qualification off and
assume it for brevity.

All ellipsoids can be described by the level sets of quadratic forms as
follows. Let S be a symmetric and positive-definite n× n real matrix. Let f
be a function such that:

f : Rn×1 → R : f(x) = xTSx.

Then the set {x : f(x) = 1} is an ellipsoid. The proof is as follows. Because
S is symmetric, its eigen-decomposition exists. So let
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S = QDQT ,

where Q is an orthogonal matrix containing the unit eigenvectors as its
columns and D is a diagonal matrix containing the corresponding eigen-
values. Now

{x : xTSx = 1} = {x : xTQDQTx = 1}

= {x : xTQ
√
D
√
D
T
QTx = 1}

= {(
√
D
T
QT )−1x : xTx = 1}

= {Q−T
√
D−Tx : xTx = 1}

= {Q
√
D−1x : xTx = 1}.

What we have shown is that each ellipsoid can be formed by a two-pass
process. First one scales a unit sphere independently in each dimension
giving an axis aligned ellipsoid. Then one applies a rotation (and possibly
a reflection) to that ellipsoid. Because a rotation does not change lengths,
we conclude that the lengths of the principal axes are given by the diagonal
of
√
D−1. The principal axis vectors themselves are given by the product

Q
√
D−1. At the same time, we have found the linear transformation that

transforms the unit sphere to the ellipsoid with the given quadratic form
matrix. This proves that all of the sets {x | xTSx = 1} are ellipsoids.

We will now prove that all linear transformations of the unit sphere can
be represented in the quadratic form representation. First, we note that a
unit sphere Q is given by the set:

Q = {x : |x| = 1}

However, this is equivalent to:

Q = {x : |x|2 = 1}
⇔

Q = {x : xTx = 1}
⇔

Q = {x : xT Ix = 1}

Now, transform Q by a linear transformation L:
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L(Q) = {Lx : xT Ix = 1}
= {x : (L−1x)T I(L−1x) = 1}
= {x : xTL−TL−1x = 1}

Clearly L−TL−1 is symmetric:

(L−TL−1)T = L−TL−1 = L−TL−1

And positive semi-definite:

∀x : xTL−TL−1x = (L−1x)T (L−1x) = |L−1x|2 ≥ 0

However, because L is invertible, x = 0 is the only vector for which L−1x = 0
and thus the matrix is positive definite. Thus any ellipsoid can be given by
a quadratic form representation as stated. Let there be two ellipses with
quadratic form matrices L−TL−1 and M−TM−1. Then:

{ML−1x : xTL−TL−1x = 1} = {x : (LM−1x)TL−TL−1(LM−1x) = 1}
= {x : xTM−TLTL−TL−1LM−1x = 1}
= {x : xTM−TM−1x = 1}

Thus any two ellipsoids are related by a linear transformation.

6 Computation of the ellipsoid bounding box

We wish to compute the bounds of the ellipsoid along an arbitrary unit
vector n, so that we can bound the ellipsoid with a box. That is, we wish to
maximize the length of the projection to n:

f(x) = nTx,

under the constraint that the vector lies on the ellipsoid:

xTSx = 1.

To solve this, we transform the problem to an unconstrained problem of
maximizing (this is the method of Lagrance multipliers)

h(x, t) = nTx+ t(xTSx− 1).
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The gradient of h w.r.t to x is given by

∇xh(x, t) = n+ 2tSx,

and the derivative of h w.r.t. t is:

∂h

∂t
(x, t) = xTSx− 1.

We set these derivatives to zero to find the maximum:{
n+ 2tSx = 0

xTSx− 1 = 0

From the first equation we obtain

x = −S
−1n

2t
.

Substitute this into the second equation to solve for t:

1

4t2
nTS−TSS−1n− 1 = 0

⇔
1

4t2
nTS−Tn = 1

⇔
nTS−Tn

4
= t2

⇔
nTS−1n

4
= t2

⇔

t = ±
√
nTS−1n

2
.

Finally, substitute t back to the first equation to solve for x:

x = ± S−1n√
nTS−1n

.

We are only interested in the length of vector x along the vector n (remember
that n is a unit vector). This is computed as

|x‖n| = nTx = ± nTS−1n√
nTS−1n

= ±
√
nTS−1n.
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which completes our derivation. Let us apply the formula for the standard
basis axes. In this case:

|x‖ei
| = eTi x = ±

√
eTi S

−1ei = ±
√
S−1
ii ,

6.1 Example: Computation of an axis aligned bound-
ing box in R2

Let

S =

[
a b
b d

]
.

By Cramers rule

S−1 =
1

ad− b2

[
d −b
−b a

]
,

from which we get: 
xmax =

√
d

ad−b2

xmin = −xmax
ymax =

√
a

ad−b2

ymin = −ymax

.

7 Computation of the forward differences

The function f that gives the ellipsoid as its level set is given by:

f(x) = xTSx

We note that f is a n-variate quadratic polynomial in x. Rather than evaluat-
ing this polynomial directly at each point, we can make use of forward differ-
ences. The forward difference of f is simply δf : δf(x; δx) = f(x+δx)−f(x).
Similarly to the derivative, the forward difference of an n-degree polynomial
is an (n − 1)-degree polynomial. The advantage of using forward differ-
ences is that we can evaluate the polynomial on a uniform grid by simply
using the forward difference to step forward on the polynomial: f(x+ δx) =
f(x) + δf(x; δx). What really make the forward differences useful is that we
can repeat this process: we can take take the forward difference of a forward
difference to end up at a (n− 2)-degree polynomial and so on. This process
ends up when then forward difference gives a 0-degree polynomial, that is, a
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constant. Where this leads to is that given the values of the forward differ-
ences and the function value at a single point, we can find out all the other
values of the function on the grid by using addition exclusively. Since we
avoid the multiplications (other than at the setup at the beginning point),
this is very efficient. We will now proceed with their derivation:

δf(x; δx) = f(x+ δx)− f(x)

= (x+ δx)TS(x+ δx)− xTSx
= xTSx+ 2δxTSx+ δxTSδx− xTSx
= 2δxTSx+ δxTSδx.

Because we wish to visit all texels inside a box, the only forward differences we
need are those that are in the directions of the standard basis axes and of one-
texel magnitude. Let us simplify the forward differences for this situation:

δif(x) = δf(x; ei)

= 2eTi Sx+ eTi Sei

= 2Six+ Sii,

where Si denotes the i:th row of S. This is clearly a 1-degree polynomial in
x. To get to the constant forward differences, we need to repeat the process.

δ2f(x; δx1, δx2) = δf(x+ δx2; δx1)− δf(x; δx1)

= 2δxT1 S(x+ δx2) + δxT1 Sδx1 − 2δxT1 Sx− δxT1 Sδx1

= 2δxT1 Sδx2.

Again, we are only interested in those directions δx1 and δx2 that are along
the standard basis axes. Thus we get:

δ2
ijf(x) = δ2f(x; ei, ej)

= 2eTi Sej

= 2Sij.

Note that

δ2f(x; δx1, δx2) = δ2f(x; δx2, δx1).

In general, with forward differences of arbitrary order, the differenciation
order does not matter.

9



7.1 Example: Computation of the forward differences
in R2

Let

S =

[
a b
b d

]
.

Then the forward differences in the standard basis axes directions are

δxf(x, y) = 2S0[x, y]T + S00 = 2ax+ 2by + a

δyf(x, y) = 2S1[x, y]T + S11 = 2bx+ 2dy + d

δ2
xxf(x, y) = 2S00 = 2a

δ2
yyf(x, y) = 2S11 = 2d

δ2
xyf(x, y) = 2S01 = 2b = 2S10 = δ2

yxf(x, y)

8 Constant-time filtering

Constant-time filtering can be achieved by using mipmaps. A mipmap is a
list Mi of downsampled images of a texture. As an overload of terminology,
the invidual images Mi are also called mipmaps. For familiarity, we will
restrict the discussion to two dimensions. The M0 contains the original image
upsampled to the nearest width and height such that they are equal powers
of two. For i > 0, Mi contains a downsampled version of M0 with both
dimensions divided by 2i. If the width and height of M0 are D, then the
number of mipmaps in M is log2(D). Thus MD contains only a single pixel,
since D/2log2(D) = 1.

Mipmaps are strongly associated with trilinear (in higher dimensions,
multilinear) filtering. However, more correctly mipmaps are simply pre-
filtered versions of an image. Which technique is used to filter over these
images is an independent decision. Trilinear filtering works by finding a
mipmap level where the pixel filter contains at most two pixels. The tex-
ture value at this level is retrieved by filtering with a separable triangle filter
that is oriented on the standard basis axes in the texture space (this is often
called bilinear filtering). However, to make transitions between mipmaps less
evident, one also retrieves the texture value with bilinear filtering from one
coarser level and then interpolates between these two filtering results, giving
’trilinear filtering’.

While fast, trilinear filtering has serious problems with quality. It does
prevent antialiasing, but unfortunately also cuts away detail unnecessarily,
resulting in loss of detail. The reason for this is that the filter used in
texture space is always shaped and oriented as a square axis aligned box. In
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particular, pixel filters that transform to skinny diagonal shapes in texture
space are heavily overblurred.

One then calls for a filtering method that can adapt to differently oriented
shapes. This is where EWA filtering steps in: the ellipses can fit the the pixel
filter shapes and orientations exactly under the local affine approximation
and radial filter assumption. To use this with mipmaps, we increase the
number of pixels that the filter is required to cover in the chosen mipmap
level. Specifically, we require that the minor axis of the ellipse covers at least
x amounts of pixels per filter radius in the coarser image. The emphasized
words are what generalizes the technique to arbitrary filter radii. This means
that the filtering time becomes dependent on the filter radius. Indeed this
is how it should work: for example, increasing the radius of a gaussian filter
(while keeping its variance constant) should not produce a more compact
transformed pixel filter.

The work that must be done for the filtering is still not limited in any
way: the ellipse can be of arbitrary size and eccentricity. Eccentricity of an
ellipse is defined as the ratio of the lengths of its major and minor axis. It is
the arbitrary eccentricities that allow for large filtering areas. We can achieve
constant-time filtering by setting a maximum to eccentricity. Whenever the
ellipse has an eccentricity above the allowed eccentricity, we scale up the
length of the minor axis such that the ellipse has the maximum allowed
eccentricity. This results in excessive blurring, but we can not allow for
aliasing that would happen if we shrinked the major axis. This blurring is
not something to be afraid of in terms of quality: since the filtering area is
large anyway, the difference isn’t probably noticeable to the eye. One just
has to set the maximum eccentricity high enough: 30 seems to be a good
value.

As with trilinear filtering, one should linearly interpolate between the
EWA filtering results of the two mipmap levels that are adjacent to the
computed detail level to make transitions invisible.

9 Computing ellipsoid eccentricity

We need to compute the ellipsoid eccentricity to be able to bound the work
that must be done for the filtering. For this, we need the principal axes of
the ellipsoid. In some texts, the authors incorrectly take the texture space
derivatives as the ellipsoid’s principal axes. However, this is incorrect: the
derivatives correspond to the ellipsoid’s principal axes if and only if they
are orthogonal to each other. Using the lengths of the derivative vectors
for the eccentricity computation leads to underestimating the eccentricity,
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sometimes to the point that it doesn’t approximate the real eccentricity at
all. For a pathological example, if the derivative vectors are close to being
equal, the approximated eccentricity is close to 1, and the real eccentricity can
be close to anything. Thus, using the derivatives even as an approximation
to the principal axes is unjustified.

Instead, a full eigen-decomposition must be performed on the ellipsoid
quadratic form matrix. The eigenvectors then give the principal axis di-
rections and the eigenvalues are related to the lengths of the principal axis
vectors. Let

xTSx = 1,

where S is symmetric. Let x be an eigenvector of S corresponding to the
eigenvalue λ with the restriction that it lies on the ellipsoid. Then:

xTSx = λxTx = λ|x|2 = 1

⇒
|x| =

1√
λ

Thus the lengths of the ellipse’s principal axes can be computed from eigen-
values. There are several standard methods for computing eigen-decompositions,
see for example [3].

9.1 Eigen-decomposition of a 2× 2 matrix

For the 2d case, finding the eigen-decomposition for a symmetric 2×2 matrix
is trivial. Let

S =

[
a b
b d.

]
We can solve the eigenvalues λ directly from the characteristic equation:

det

[
a− λ b
b d− λ

]
= 0

⇒
(a− λ)(d− λ)− b2 = 0

⇒
ad− λ(a+ d) + λ2 − b2 = 0

⇒
λ2 − λ(a+ d) + (ad− b2) = 0,
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which is a quadratic equation in λ and trivially solved. Theoretically, this
equation should always have two real solutions (we take double-roots as two
distinct roots) and thus the discriminant should be non-negative. However,
practically the discriminant will sometimes be computed as negative due to
rounding errors (especially when the ellipse is close to being a circle). In
this case the discriminant should simply be rounded to zero. Given the
eigenvalues λ1 and λ2, where λ1 ≤ λ2:

major axis length =
1√
λ1

,

minor axis length =
1√
λ2

,

eccentricity =
major axis length

minor axis length

=

√
λ2

λ1

.

In the case that eccentricity is above the maximum allowed eccentricity, we
must also compute the eigenvectors. Let

[
a− λ b
b d− λ

] [
x
y

]
= 0

⇒{
(a− λ)x+ by = 0

bx+ (d− λ)y = 0

From the first equation one gets:

y =
(λ− a)x

b
,

giving a family of eigenvectors of [
1
λ−a
b

]
.

The singularity can be removed by multiplying by b:[
b

λ− a

]
.

From the second equation one gets:
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y =
bx

λ− d
,

giving a family of eigenvectors of [
1
b

λ−d

]
.

The singularity can again be removed by multiplying by (λ− d):[
λ− d
b.

]
.

Note that we have used only one eigenvalue here, and thus the obtained
vectors should be multiples of each other. However, we need to consider
both of them because one of the vectors can be the zero vector. Both of
the vectors being zero is equivalent to the matrix being a multiple of the
identity matrix (then the ellipsoid is a sphere). However, if we compute the
eigenvectors only when we have already checked that the eccentricity exceeds
some threshold, this can’t be the case. Out of these two vectors then, we
should pick the one that has greater norm (for example, manhattan norm,
for efficiency).

It can be shown that the eigenvectors of a real symmetric matrix are
orthogonal to each other. Thus it suffices to compute a single eigenvector
and obtain the other eigenvector by taking its perpendicular.

10 Visual comparison of filtering techniques

We shall now compare the results of different filtering techniques visually. We
chose four filtering techniques for this task. These are ’no filtering’, ’trilinear
filtering’, ’EWA filtering’, and ’enhanced EWA filtering’. The original EWA
filtering algorithm uses a gaussian filter with radius 1. For the enhanced EWA
filtering algorithm I chose a Lanczos filter with radius 2 for magnification and
a triangle filter with radius 1 for minification: I found these to produce the
best results visually. For the checker images I have used repeated tiling to
extend the texture: this is why there are visible edges at the filtered images.
For the other images I have used clamping instead.

The Figure 2 image is a stress-test for the antialiasing capabilities of the
filtering technique as well as its ability to adapt to anisotropic conditions.
With no filtering, the image shows severe aliasing. With trilinear filtering,
the image is overblurred. With EWA filtering, the image is nicely antialiased,
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(a) No filtering (b) Trilinear filtering

(c) EWA filtering (d) Enhanced EWA filtering

Figure 2: Quality of anisotropic antialiasing with diagonal filter footprints.

but is a bit overblurred at the front. With enhanced EWA filtering, the image
is both nicely antialiased and sharply magnified.

The Figure 3 is another stress-test for antialiasing and anisotropy, showing
much greater frequency content. The results are similar to the previous
image.

The Figure 4 demonstrates the quality of image in a normal viewing
situation. In this case there is not that much frequency content and thus with
no filtering the image looks acceptable, although one can see the blockiness of
magnification. Trilinear filtering has severe overblurring. Both EWA filtering
and enhanced EWA filtering perform antialiasing in a pleasing manner, but
the enhanced EWA filtering preserves detail better.

The Figure 5 demonstrates the quality of isotropic magnification. With
no filtering, the result is blocky. With trilinear filtering, the result is still
somewhat blocky and on the other hand blurry. EWA filtering results in
overblurred image. Enhanced EWA filtering results in a sharp image.

The Figure 6 is another demonstration of the quality of magnification.
Particularly, it demonstrates that in the original EWA algorithm the radius
of 1 is not enough for the gaussian filter (of variance 0.5) to attenuate enough
for the clamping step to be negligible. Let the gaussian filter g : R → R be
given as g(x) = ae−2x2

, where a ∈ R, a > 0. Then the relative magnitude of
the clamping step is

g(1)

max g
=
g(1)

g(0)
=
ae−2

ae0
= e−2 ≈ 13.5%.
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(a) No filtering (b) Trilinear filtering

(c) EWA filtering (d) Enhanced EWA filtering

Figure 3: Quality of anisotropic antialiasing with high frequency content.

(a) No filtering (b) Trilinear filtering

(c) EWA filtering (d) Enhanced EWA filtering

Figure 4: A typical viewing situation.
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Figure 5: Quality of isotropic magnification. Top left: no filtering, top right:
trilinear filtering, bottom left: EWA filtering, bottom right: enhanced EWA
filtering.
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This is quite high a magnitude and causes the visible artifacts shown.
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(a) No filtering (b) Trilinear filtering

(c) EWA filtering (d) Enhanced EWA filtering

Figure 6: Quality of isotropic magnification, magnification artifacts from
Gaussian filter clamping.
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