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1 Introduction

In this paper we give functional definitions for linear, affine, conformal affine,
and rigid transformations between vector spaces. We then show that they
have the familiar matrix forms when applied from R" to R™. The notation is
as follows. Vectors are written in boldface, while scalars are written in normal
style. V and W are real vector spaces with an inner product Ifx,y eV,
then (x,y) denotes their inner product and (x) = ) x| = \/_ denotes
the norm of x.

2 Transformations

Let S={vy,---,v,} C V,and U = {uy, -+ ,u,} C R. The sum > ;"  u;v;
is called a linear combination. A linear combination is called an affine com-
bination if >  u; = 1. Let £ : V. — W. The function f is:

o A linear transformation if it preserves linear combinations:

=1 - =1
Vx,y € V:Va,p € R: flax + fBy) = af (x) + 5f(y).

e An affine transformation if it preserves affine combinations:

f (Z uivi> = Zuif(vi),

where > u; = 1.
=

Vx,y e V.Vt e R:f((1 —t)x+ty) = (1 —t)f(x) + tf(y).
o A conformal affine transformation if it scales distances by a constant:

ds>0eR:Vx,ye V:|f(x)—f(y) =slx—y]|

e A rigid transformation if it preserves distances:
X,y € V: [f(x) —f(y)| = [x —¥]

Clearly a rigid transformation is a conformal affine transformation, and a
linear transformation is an affine transformation. That a conformal affine
transformation is an affine transformation is not straightforward to see and
is proven next.



2.1 Conformal affine transformation is an affine trans-
formation

f: V — W is conformal affine
=

f:V— W is affine

Proof. Extending the definitions, the claim is:

ds>0eR:Vx,ye V:|f(x)—f(y) =slx—y]|
=
Vx,y e V.Vt e R:f((1 —t)x+ty) = (1 —t)f(x) + tf(y).
Let
= (1—-t)x+ty
a = f(z) —f(x)
b = f(y)—f(z)
It then follows that
f(x) = f(z)—a,
f(y) = b+f(z2).

Rewrite the claim in terms of a and b

f(z) = f((1—t)x+ty)
= (1-t)f(x)+tf(y)
= (1—t)(f(z) — a) + t(b +(2))
(

= f(z) —tf(z) — (1 —t)a+tb + tf(z)
= f(z)—(1—-t)a+tb
=

(1-t)a = tb



Cover the singularities

Let us first cover some singularities:

b=0 = [b]=If(y)—f(z)[=0

sly —z| =0

z=Yy

(I-—t)x+ty=y

t=1Vx=y

f((1-t)x+ty) = (1 —t)f(x) + tf(y)
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t=0 = f((1-t)x+ty)=Ff(x)=(1-H)f(x) + tf(y)

t=1 = f(1-t)x+ty) =£(y)=(1-t)f(x)+ tf(y)

From now on, assume t # 0, t # 1 and b # 0.

Find a connection between |a| and |b|

la| = [f(z) - f(x)]
= s|z — x|
= s|(1 —-t)x+ty — x|
= s|—tx+ty]
= |t]sly — x|
= [t|[f(y) — £(x)]
= |t[la+ b

bl = [f(y) — £(2)]
= sy — 2|
= slz—y|
= s|(1-t)x+ty —y]|
= s|(1—=t)x+ (t—1y]|
= |[L—t|sx—y]
= [1—tlsly — x|
= |1 —=t|[f(y) — £(x)|
= |1 —t||la+b]
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Thus
11— t|[a] = [t]|b|

Let
t
c=|——
1—¢

Then
a| = c[b

Show that a and b are collinear

Assume 0 < t < 1.

lal +[b] = (t[+[1 —t[)]a+b| = |a+Db]

Y

(la] +[b))* = Ja+bf*
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la]* + [b|* + 2[a|b] la]” + [b[* + 2(a, b)

Y

(a,b) = [a]|b|
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JkeR:a = kb

Assume t < Qor ¢t > 1.

lal = bl| = [(|t| = [1 —t])]a+b|| = |a+ b
=
(lal = [b])* = |a+bf
=
lal” + [b] —2Ja|lb| = |a|*+ [b* +2(a,b)
=
(a,b) = —lalfb|
=

dJteR:a = kb

Thus for all ¢ (excluding 0 and 1): 3k € R: a = kb.



Show that |k| = ‘ﬁ‘

JkeR:a = kb

=
la| = [kb| = [k[[b] = c[b]
=
k| = ¢
=
t
o= |
Show that k = -
Assume k = —ﬁ, then
¢ (1—t)—t 1-—2t
+ 1—t+ 1—t 1—1t
and
f(y) —f(x)| = la+b|[=[kb+b|=]|(k+1)b]
1—2t
B ‘1—t’|b|
1—2t
— |2 (v = £
=2t - ta)
=2,
R T L
1—2¢
— sl — Tl lv=(1=8x—
1—2¢
= s|7—||lL=t)x+({—1y|
1—1¢
1—-2t
= 1—tly —
222y -
= s|1—2t||ly — x|

A contradiction. Thus k£ = ﬁ



Finish off the proof

(1—t)a = tb

]

2.2 An alternative definition for a rigid transformation
f:V — W is rigid
&
Vx,y,2 € V: (f(x) - f(y) f(z) - f(y) = x -y, 2-y)

Proof. ’<=" Choose x = z:

(f(x) —f(y)) = x-y)
p=—

f(x) —f(y)? = [x—yl?
=

f(x) —f(y)| = [x—y]

‘=’ The following identity holds for any a,b € V:

(ab) = {(a+b) + (a—b)

Thus by using this fact along with that f is rigid and thus also affine by



section 2.1:

(£(x) — £(y), z) — £(y)) = (600 + () — 26(y)) + { {F(x) — £(2)
= (P ) ) + e - o)
= (557) - 1) + e — )

4 /x+2z 1
- 1< 2 ‘y>+z<x—z>
= xtrooy)+ k)
= (x-y,z-Yy)

2.3 Affine transformation from R” to R
f:R" — R™ is affine
&
JA e R™":3b € R™ : f(x) = Ax + b.

Proof. "<

f((1—-t)x+ty) A((1—-t)x+ty)+b

(1-t)Ax+tAy + ((1—-t)+1t)b
(1-t)(Ax+Db)+t(Ay+b)
(

1 —t)f(x) + tf(y)



_ zn:xif(ei)+ (1— Y x) £(0)

1=
n

= Z z;f(e;) — Z 2;£(0) + £(0)

n

— Z z;(f(e;) — £(0)) + £(0)

= Ax+Db

where A = [f(e;) — £(0),--- ,f(e,) — £(0)], and b = £(0). O

2.4 Linear transformation from R" to R
f:R" — R™ is linear
&
JA e R™" : f(x) = Ax

Proof. A linear function is an affine function. For a linear function f(0) =
f(0*0) = 0% f(0) = 0. Thus the result is a corollary of section 2.3. O

2.5 Conformal affine transformation from R" to R”
f:R" — R™ is conformal affine
&
IQeR™™:Q'Q=1:FbcR™:IscR:f(x)=sQx+b

Proof. '=" We proved in section 2.1 that a conformal affine transformation
is an affine transformation. Thus we know that

JA e R™" db e R™ : f(x) = Ax + b.



and by that same section we can actually explicitly give A and b.

£(x) — £(y)] = slx -y

=

[(Ax+b) — (Ay +b)| = s|x —y]|
=

[A(x = )| = s[x |

<~

(x—y)'ATA(x —y) =’ (x ~y) (x ~y)
=

(x—y)"(ATA - s*I)(x—y) =0

<~

ATA —s’T=0

=

ATA = $°1

Define Q = %. It then follows that QTQ =TI and f(x) = sQx + b.

f(x) —£(y)]? = [|(sQx+b)—(sQy + b)|?
= [sQx — sQy)|?
= $’|Qx - Qy)[’
= SQ(x—y))?
= Sx—-y)'Q'Qx—-y)
= Sx-y)(x-y)
= Sx -yl

f(x) —f(y)| = slx-y|

2.6 Rigid transformation from R" to R™
f:R" — R™ is rigid
&
JQeR™™:Q'Q=I:FTbcR™:f(x)=Qx+b
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Proof. A rigid transformation is a conformal affine transformation with scal-
ing 1. Thus the result is a corollary of section 2.5. [

3 Acknowledgements

I received substantial help from the people at the newsgroup sci.math for
some of the proofs. I credit the following people:

e David C. Ullrich (section 2.1)
e 'Rupert’ (section 2.1)
e Robert Israel (section 2.5)

e Timothy Murphy (section 2.2)

11



