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1 Preface
A real vector space V allows the representation of 1-dimensional, weighted, oriented
subspaces. A given vector v ∈ V represents the subspace span({v}) = {αv : α ∈ R},
called the span of v. Inside this subspace, vectors can be compared with respect to v;
if w = αv, for some α ∈ R, then its magnitude (relative to v) is |α| and its orientation
(relative to v) is sgn(α). To compare vectors between different subspaces requires a way
to measure magnitudes. This is made possible by introducing a symmetric bilinear form
in V , turning V into a symmetric bilinear space.

An exterior algebra on V extends V to a unital associative algebra G(V ), which
allows the representation of subspaces of V as elements of G(V ). Each k-dimensional
subspace of V can be represented in G(V ) as an exterior product of k vectors, and vice
versa. Each element representing the same subspace in G(V ), the span of the element,
can be compared to a baseline element to obtain its relative magnitude and relative
orientation. A symmetric bilinear form in V induces a symmetric bilinear form in G(V )
(the scalar product), so that G(V ) also becomes a symmetric bilinear space. Given
a symmetric bilinear form in G(V ), one may measure magnitudes of subspaces, and
define the contraction in G(V ), which is the algebraic representation of the orthogonal
complement of a subspace A ⊂ V on a subspace B ⊂ V .

A Clifford algebra on V introduces a single product, the geometric product, in G(V ),
which encompasses both the spanning properties required to form subspaces, and the
metric properties required to measure magnitudes. A special property of this product over
the more specific products is that it is associative. This brings in the structure of a unital
associative algebra, which has the desirable properties of possessing a unique identity and
unique inverses. Applying the geometric product in a versor product provides a structure-
preserving way to perform reflections in V , which extends to orthogonal transformations
in V by the Cartan-Dieudonné theorem.

1.1 Relation to other texts

This paper can be thought to complement the book Geometric Algebra for Computer
Science [3], which we think is an excellent exposition of the state-of-the-art in geometric
algebra, both in content and writing. A mathematician, however, desires for greater
succinctness and detail; we aim to provide that in this paper. Ideally, one would alternate
between this paper, for increased mathematical intuition, and that book, for increased
geometric intuition.

The organization of this paper is inspired by the Schaum’s Outlines series. In partic-
ular, we begin each section by giving the definitions without additional prose, and then
follow up with a set of theorems, remarks, and examples concerning those definitions.
In addition, we give many of the theorems and remarks a short summary; we hope this
makes it more efficient to skip familiar parts later when recalling the subject matter.

In addition to [3], we merge together ideas from several other texts on geometric
algebra, notably [4] and [2]. Here we briefly summarize the key points in which we have
either adopted, or diverged from, an idea. A comparison between terms in different texts
is given in Table 1.

Remark 1.1.1 (Coordinate-free proofs). We prove the results in Clifford algebra
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Table 1: Comparison of terms between texts

Concept This paper [4] [3]

Product of k vectors Versor Versor -

Product of k invertible vectors Invertible versor Invertible versor Versor

Simple element of Cl(V ) k-blade simple k-vector k-blade

Solutions to v ∧ A = 0 Span ? Attitude

Measure of size in Cl(V ) Magnitude Magnitude Weight

without assuming a priviledged basis for the vectors. This reveals structure in proofs.
The key theorem in this task is Theorem 4.5.14, which shows that vector-preserving
homomorphisms preserve grade.

Remark 1.1.2 (General form for the bilinear form). We do not assume any par-
ticular form for the underlying symmetric bilinear form. This makes it explicit which
theorems generalize to arbitrary symmetric bilinear forms, and which do not. In addi-
tion, this reveals structure in proofs.

Remark 1.1.3 (Contraction, not inner products). We adopt the definition of con-
traction from [3]. This definition is different from [4] and [2]. See Section 4.8 for details.

Remark 1.1.4 (Explicit notation for dual). We denote the dual of a k-blade Ak on
an invertible l-blade Bl by AkBl . This notation is shown appropriate by Theorem 4.11.4,
which says that

span
(
Ak
Bl
)

= span(Ak)
Bl . (1.1.1)

In addition, this makes the l-blade Bl explicit, which is important when taking duals in
subspaces. We diverge from [3], which uses the notation A∗k, and assumes the reader is
aware of the l-blade Bl relative to which the dual is taken. The undual A−∗k in [3] is given
by AkB

−1
l .

Remark 1.1.5 (Minor corrections). To translate results between this paper and [3],
it is useful to be aware of some minor errors in their text:

• What they call a bilinear form is actually a symmetric bilinear form.

• What they call a degenerate bilinear form is actually an indefinite non-degenerate
symmetric bilinear form, so of signature (p, q, 0).

• What they call a metric space is actually a norm space.

• What they call a norm is correct, but only defined when the underlying symmetric
bilinear form is positive-definite.

These errors are minor, and in no way affect the excellent readability of [3].
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Table 2: Latin alphabet (small)

Symbol Meaning Example

a, b, c, d Vector in a vector space, 1-vector a ∈ V

e Exponential function eB2

f , g, h Function f(x), g ◦ h

i, j Index i ∈ I

k, l, m Cardinality of a set, grade of a k-vector {a1, . . . , ak}, Ak
n Dimension of a vector space

o Avoided; resembles zero

p, q, r A distinguished point limx→p f(x) = y

s, t -

u, v, w Vector in a vector space

x, y, z Point in a topological space

p, q, r Represented point in the conformal model

[p] Point representative in the conformal model p ∈ [p]
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Table 3: Latin alphabet (capitals)

Symbol Meaning Example

A, B, C Multi-vector A =
∑n

k=0Ak

Ak, Bl, Cm k-vector

B Basis of a vector space or of a topological space BX ⊂ TX

C Closed sets of a topological space CX

D, E -

F Field α ∈ F

G, H Group

I, J Index set {ai}i∈I ⊂ V

K -

L Linear functions between vector spaces L(U, V )

M , N , O Neighborhood, open set Op ∈ TX(p)

P , Q -

R Rotor

S Subset, subspace S ⊂ V

T Topology TX

U , V , W Vector space v ∈ V

X, Y , Z Topological space x ∈ X
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Table 4: Greek alphabet (small)

Symbol Meaning Example

α, β, γ Scalar, scalar tuple α ∈ F , β ∈ F n

δ, ε Small scalar, especially in limits

ζ, η, θ, ι, κ -

λ Scalar

µ, ν, ξ -

o Avoided; resembles zero

π Pi constant

ρ Scalar, radius

σ Permutation σ ∈ σ(S)

τ , υ -

φ Homomorphism φ : V → W

χ -

ψ Homomorphism ψ : V → W

ω -

Table 5: List of named structures

Symbol Meaning Example

N Natural numbers 0, 1, 2

Z Integers −2,−1, 0, 1, 2

R Real numbers

GL(V ) General linear group of V

S(V ) Scaling linear group of V

O(V ) Orthogonal linear group of V

CO(V ) Conformal linear group of V

T(V ) Translation affine group of V
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Table 6: List of operators

Symbol Meaning Examplê Grade involution Â˜ Reversion Ã

Conjugation A

· Dot product, bilinear form x · y

∗ Scalar product A ∗B

∧ Exterior product A ∧B

c Left contraction A cB

b Right contraction A bB

× Commutator product A×B

o Semi-direct product of groups T(V ) oO(V )

u Internal direct sum of vector spaces V uW

⊕ External direct sum of vector spaces V ⊕W

⊥ Orthogonal sum of bilinear spaces V⊥W

⊗ Tensor product of vector spaces V ⊗W

/ Quotient vector space V/W

\ Set difference R \ {0}
V Orthogonal complement on subspace V SV

B Dual on B ∈ Cl(V ) AB

| · | Cardinality of a set |S|

P( · ) Powerset of a set P(X)

Closure of a set S

∆p Differencing at point p ∆p(f)

Dp Differentiation at point p Dp(f)

◦ Composition of functions f ◦ g
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2 Preliminaries
The aim of this paper is to study Clifford algebra, which is a unital associative algebra
over a field. Since this algebra contains a symmetric bilinear form, the preliminary theory
which enters their study consists not only of vector spaces, but also of bilinear spaces.
Of the bilinear spaces those with finite dimension, symmetry, and non-degenerateness
are priviledged over others. The reason for this is that it is only here where the orthog-
onal complement behaves in a geometrically meaningful manner, and where orthogonal
functions can be represented as compositions of reflections. These properties are both
essential for geometric algebra. In this section we develop these preliminary theories in
full generality. This approach shows clearly which properties generalize, and which do
not. We will assume that the reader is familiar on a basic level with groups and fields.

2.1 Basic definitions

A norm on a field F is a function | · | : F → R such that

• |x| = 0⇔ x = 0,

• |x| ≥ 0,

• |xy| = |x||y|,

• |x+ y| ≤ |x|+ |y|,

for all x, y ∈ F . A normed field F is a field together with a norm in F . The charac-
teristic of a ring R, denoted by char(R), is the minimum number of times the identity
element 1 ∈ R needs to be added to itself to obtain the zero element. If there is no such
number, then char(R) = 0. Let X be a set. The set of subsets of X is denoted by P(X).
A permutation of X is a bijective function σ : X → X. The set of permutations of X
is denoted by

σ(X) = {σ : X → X : σ is bijective}. (2.1.1)

A function is called an involution if it is its own inverse.

Example 2.1.1. The real numbers R and the complex numbers C are both normed
fields, whose norms are given by the absolute value.

Remark 2.1.2 (Two needs to be invertible). The characteristic of a ring is of interest
to us mainly because we want 1 + 1 ∈ R to be invertible (strictly speaking, the element 2
might not exist in R, unless interpreted as 1 + 1). Many of the results in this paper fail
if this is not the case.

Theorem 2.1.3 (Group equality by surjective homomorphisms). Let G, G′, and
H be groups such that G is a sub-group of G′. Let f ′ : G′ → H and f : G → H be
surjective homomorphisms such that f = f ′|G, and f−1(1) = f ′−1(1). Then G = G′.

11



Proof. Let g′ ∈ G′. Since f is surjective, there exists g ∈ G such that f(g) = f ′(g′).
Since f = f ′|G, it holds that f(g) = f ′(g). Therefore

f ′(g′) = f ′(g)

⇔f ′(g′)f ′(g)−1 = 1

⇔f ′(g′)f ′(g−1) = 1

⇔f ′(g′g−1) = 1

⇔g′g−1 ∈ f ′−1(1) = f−1(1) ⊂ G.

(2.1.2)

Therefore g′ = (g′g−1)g ∈ G.

2.2 Vector spaces

A vector space over the field F is a commutative group V together with a field of group
endomorphisms {φα : V → V }α∈F , such that φαβ = φα◦φβ, for all α, β ∈ F , and φ1 is the
identity function. For brevity, we will identify α ∈ F with φα, and denote αv = φα(v),
for all v ∈ V . The V is called trivial, if V = {0}. If I is any set, then we denote

F̂ I =
{
α ∈ F I : |{i ∈ I : α(i) 6= 0}| ∈ N

}
(2.2.1)

Let A = {ai}i∈I ⊂ V . The span of A is the set of all finite linear combinations of A

span(A) =

{∑
i∈I

αiai : α ∈ F̂ I

}
, (2.2.2)

The A is said to generate V , if span(A) = V , and to be linearly independent, if∑
i∈I

αiai = 0⇔ α = 0, (2.2.3)

for all α ∈ F̂ I . If A is not linearly independent, then it is linearly dependent. A
basis of V is a maximal linearly independent subset of V . The dimension of V is the
cardinality of any basis of V , denoted by dim(V ). Let W be a vector space over F . A
subspace of V is a subset W ⊂ V such that span(W ) = W . Let U,W ⊂ V be subspaces
of V . The sum of U and W is the subspace

U +W = {u+ w : u ∈ U and w ∈ W} ⊂ V. (2.2.4)

If V = U + W , and every vector v ∈ V can be given as a unique sum v = u + w, where
u ∈ U , and w ∈ W , then we will denote V = U uW , and say that V is the internal
direct sum of U and W . The external direct sum V ⊕W of vector spaces V and W
is the external direct sum of groups V and W , together with group endomorphisms of
the form

α((v, w)) = (αv, αw), (2.2.5)

for all α ∈ F , v ∈ V , and w ∈ W . If W ⊂ V is a subspace of V , then the quotient
space V/W is the quotient group {v + W}v∈V , together with group endomorphisms of
the form

α(v +W ) = αv +W, (2.2.6)
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for all α ∈ F , and v ∈ V . A function f : V → W is called linear if

f(αu+ βv) = αf(u) + βf(v), (2.2.7)

for all α, β ∈ F , and u, v ∈ V . The rank of f is the dimension of the subspace f(V ),
and the nullity of f is the dimension of the subspace f−1{0}. The dual space V ∗ of V
is the vector space of linear functions from V to F . The free vector space over F on
set I is the set {

f : I → F : |f−1(F \ {0})| ∈ N
}
, (2.2.8)

together with point-wise addition and scalar-multiplication. The linear functions are the
homomorphisms of vector spaces.

Example 2.2.1. If V is trivial, then B = ∅ ⊂ V is a basis of V ; it is vacuously linearly
independent, and also maximal, since B ∪ {0} is linearly dependent. The span of the
empty set is span(∅) = {0}.

Remark 2.2.2. By definition, all bases of V have equal cardinality.

Remark 2.2.3. The quotient is the inverse of the direct sum; it subtracts a subspace.
That is achieved by identification of vectors.

Remark 2.2.4 (Direct sum is the direct product). The direct sum and the direct
product of groups and vector spaces are the same thing. The additive terminology is used
when dealing with commutative groups, and the multiplicative terminology is used when
dealing with non-commutative groups. Since a vector space is built on a commutative
group, the additive terminology is adopted for vector spaces.

Theorem 2.2.5 (Every vector space has a basis). Let V be a vector space, and
A ⊂ V be a linearly independent set. Then there exists a basis B ⊂ V of V such that
A ⊂ B.

Proof. Let L be the set of those linearly independent subsets of V which contain A. Then
L is partially ordered by the inclusion relation. Let C ⊂ L be a linearly ordered subset
of L, and Ŝ =

⋃
S∈C S. Since every S ∈ C is contained in Ŝ, every subset of Ŝ is linearly

independent, and A ⊂ Ŝ, Ŝ ∈ L. Therefore Ŝ is an upper bound of C in L. By Zorn’s
lemma, there exists a maximal element B ∈ L. Suppose B is not maximal as a linearly
independent set. Then there exists v ∈ V such that B ∪ {v} is linearly independent.
Since A ⊂ B ∪ {v}, this contradicts the maximality of B. Therefore B is a basis.

Remark 2.2.6. In particular, Theorem 2.2.5 shows that every vector space has a basis,
since the empty set is vacuously linearly independent.

Remark 2.2.7. For finite-dimensional vector spaces, Theorem 2.2.5 can also be shown
without using Zorn’s lemma. The claim that every vector space has a basis is equivalent to
Zorn’s lemma. Other equivalents include the axiom of choice, and that cardinal numbers
can be linearly ordered.

Remark 2.2.8. Every free vector space has a basis. Therefore there exists vector spaces
of arbitrary dimensions even without assuming Zorn’s lemma.
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Theorem 2.2.9 (Basis is linearly independent and generating). Let V be a vector
space over F , and B ⊂ V . Then B is a basis if and only if B is linearly independent and
generates V .

Proof. Let B = {bi}i∈I ⊂ V , and assume B is a basis. Then B is linearly independent by
definition. Suppose B does not generate V ; then there exists v ∈ V \ span(B). Consider
the equation

αv +
∑
i∈I

βibi = 0, (2.2.9)

where α ∈ F , and β ∈ F̂ I . If α 6= 0, then v can be solved in terms of B, which
contradicts v not being in the span ofB. Therefore α = 0. SinceB is linearly independent,
β = 0. Therefore {v} ∪ B is linearly independent, which contradicts the maximality of
B. Therefore B generates V . Assume B is linearly independent and generates V . Then
any v ∈ V can be solved in terms of B, and so {v} ∪ B is linearly dependent. Therefore
B is maximal.

Theorem 2.2.10 (Linear independence is equivalent to unique coordinates).
Let V be a vector space over F , and B = {bi}i∈I ⊂ V . Then B is linearly independent if
and only if for each v ∈ span(B) there exists a unique α ∈ F̂ I such that v =

∑
i∈I αibi.

Proof. Assume B is linearly independent. Since v ∈ span(B), there exists α ∈ F̂ I such
that

v =
∑
i∈I

αibi. (2.2.10)

Suppose there exists β ∈ F̂ I such that

v =
∑
i∈I

βibi. (2.2.11)

By subtraction, it then follows that∑
i∈I

(αi − βi)bi = 0. (2.2.12)

Since B is linearly independent, α = β. Therefore α is unique. Assume that for each
v ∈ span(B) there exists a unique α ∈ F̂ I such that v =

∑
i∈I αibi, and consider the

equation ∑
i∈I

αibi = 0. (2.2.13)

Since α = 0 is a solution to this equation, and that solution is unique, necessarily α = 0.
Therefore B is linearly independent.

Theorem 2.2.11 (Image and kernel are subspaces). Let V and W be vector spaces
over F , and f : V → W be linear. Then f(V ) is a subspace of W , and f−1{0} is a
subspace of V .

14



Proof. Let x, y ∈ V , and α, β ∈ F . Then

αf(x) + βf(y) = f(αx+ βy) ∈ f(V ). (2.2.14)

Therefore f(V ) is a subspace of W . If in addition f(x) = 0 and f(y) = 0, then

f(αx+ βy) = αf(x) + βf(y)

= 0.
(2.2.15)

Therefore f−1{0} is a subspace of V .

Theorem 2.2.12 (Rank-nullity theorem). Let V and W be vector spaces, and f :
V → W be linear. Then

dim(V ) = dim(f(V )) + dim
(
f−1{0}

)
. (2.2.16)

Proof. Let A = {ai}i∈I ⊂ W be a basis of f(V ), and B = {bj}j∈J ⊂ V be a basis of
f−1{0}. Let C = {ci}i∈I ⊂ V be such that f(ci) = ai, for all i ∈ I, and x ∈ V . Since A
generates f(V ), there exists α ∈ F̂ I , such that

f(x) =
∑
i∈I

αiai. (2.2.17)

Then

f

(
x−

∑
i∈I

αici

)
= f(x)−

∑
i∈I

αif(ci)

= f(x)−
∑
i∈I

αiai

= 0.

(2.2.18)

and therefore x −
∑

i∈I αici ∈ f−1{0}. Since B generates f−1{0}, there exists β ∈ F̂ J ,
such that

x−
∑
i∈I

αici =
∑
j∈J

βjbj. (2.2.19)

Therefore
x =

∑
i∈I

αici +
∑
j∈J

βjbj, (2.2.20)

and B ∪ C generates V . Consider the equation∑
i∈I

αici +
∑
j∈J

βjbj = 0. (2.2.21)

Then

f

(∑
i∈I

αici +
∑
j∈J

βjbj

)
=
∑
i∈I

αif(ci)

=
∑
i∈I

αiai

= 0.

(2.2.22)
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Since A is linearly independent, α = 0. Since B is linearly independent, β = 0. Therefore
C ∪B is linearly independent, and a basis of V . Then

dim(V ) = |C ∪B|
= |C|+ |B|
= |A|+ |B|
= dim(f(V )) + dim

(
f−1{0}

)
.

(2.2.23)

Theorem 2.2.13 (Subset of a linearly independent set is linearly independent).
Let V be a vector space over F , A,B ⊂ V be such that B is linearly independent, and
A ⊂ B. Then A is linearly independent.

Proof. Let B = {bi}i∈I ⊂ V , and A = {bj}j∈J ⊂ B. Consider the equation∑
j∈J

αjbj = 0, (2.2.24)

where α ∈ F̂ J . This equation is equivalent to∑
j∈J

αjbj +
∑
i∈I\J

0bi = 0. (2.2.25)

Since B is linearly independent, α = 0. Therefore A is linearly independent.

Theorem 2.2.14 (Superset of a generating set is generating). Let V be a vector
space over F , A,B ⊂ V be such that B generates V , and B ⊂ A. Then A generates V .

Proof. If A = B, then the result holds trivially. Assume A 6= B. Holding the coefficients
of A \B zero, we see that span(B) ⊂ span(A). Since span(B) = V , span(A) = V .

Theorem 2.2.15 (Superset of a basis is not linearly independent). Let V be a
vector space over F , A,B ⊂ V be such that B is a basis of V , and A ) B. Then A is
linearly dependent.

Proof. Suppose A is linearly independent. Then B is not a maximal linearly independent
set; a contradiction. Therefore A is linearly dependent.

Theorem 2.2.16 (Subset of a basis is not generating). Let V be a vector space over
F , A,B ⊂ V be such that B is a basis of V , and A ( B. Then A does not generate V .

Proof. Theorem 2.2.13 shows that A is linearly independent. Suppose A generates V .
Then Theorem 2.2.15 shows that B is linearly dependent; a contradiction. Therefore A
does not generate V .

Theorem 2.2.17 (Vector-space-isomorphic is equivalent to equal dimensions).
Let V and W be vector spaces over F . Then V and W are isomorphic if and only if
dim(V ) = dim(W ).
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Proof. Assume V and W are isomorphic. Let f : V → W be a bijective linear function,
and B = {bi}i∈I ⊂ V be a basis of V . Let α ∈ F̂ I , and consider the equation∑

i∈I

αif(bi) = f

(∑
i∈I

αibi

)
= 0.

(2.2.26)

Since f is bijective, this holds if and only if∑
i∈I

αibi = 0. (2.2.27)

Since B is linearly independent, α = 0. Therefore f(B) is linearly independent. Since f
is surjective, f(B) generates V . Therefore f(B) is a basis of W , and dim(V ) = dim(W ).
Assume dim(V ) = dim(W ). Let B = {bi}i∈IV be a basis of V , and C = {ci}i∈I ⊂ W be
a basis of W . Let f : V → W be a linear function such that

f(bi) = ci, (2.2.28)

for all i ∈ I. Consider the equation

f

(∑
i∈I

αibi

)
=
∑
i∈I

αif(bi)

=
∑
i∈I

αici

= 0,

(2.2.29)

where α ∈ F̂ I . Since C is linearly independent, α = 0; therefore f is injective. Since C
generates V , the second line shows that f is surjective. Therefore f is an isomorphism.

Theorem 2.2.18 (Dimension of quotient space). Let V be a vector space over F ,
and W ⊂ V be a subspace of V . Then dim(V/W ) = dim(V )− dim(W ).

Proof. Let f : V → W be a surjective linear function, and V = W uU . ThenW = f(V ),
f−1{0} = U , and dim(V ) = dim(W ) +dim(U) by Theorem 2.2.12. Since U is isomorphic
to V/W by the canonical map, dim(U) = dim(V/W ) by Theorem 2.2.17.

Theorem 2.2.19 (Vector space is isomorphic to finitely-non-zero field-sequences).
Let V be a vector space over F , and I be a set such that |I| = dim(V ). Then V ∼= F̂ I .

Proof. Let B = {bi}i∈I ⊂ V be a basis of V , and v ∈ V . Since B is a basis of V , there
exists a unique α ∈ F̂ I , called the coordinates of v in B, such that

v =
∑
i∈I

αibi. (2.2.30)

Let f : V → F̂ I be the function which sends each v ∈ V to its coordinates in B. Then
by Theorem 2.2.10 f is injective. For each α ∈ F̂ I one can compute a corresponding v
by the above sum. Therefore f is surjective. Since f is also linear, F̂ I is isomorphic to
V .
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Theorem 2.2.20 (Dual space is isomorphic to field-sequences). Let V be a vector
space over F , and I be a set such that |I| = dim(V ). Then V ∗ ∼= F I .

Proof. Let {bi}i∈I ⊂ V be a basis of V , and hf : I → F be such that

hf (i) = f(bi), (2.2.31)

for all f ∈ V ∗. Let φ : V ∗ → F I be such that

φ(f) = hf . (2.2.32)

Then if g ∈ V ∗, and α, β ∈ F ,

φ(αf + βg)(i) = hαf+βg(i)

= (αf + βg)(bi)

= αf(bi) + βg(bi)

= αhf (i) + βhg(i)

= (αφ(f) + βφ(g))(i),

(2.2.33)

and therefore φ is linear. Suppose φ(f) = φ(g). This is equivalent to f(bi) = g(bi), for
all i ∈ I. Let v ∈ V . Since B is a basis, there exists α ∈ F̂ I such that

v =
∑
i∈I

αivi. (2.2.34)

Then

f(v) = f

(∑
i∈I

αivi

)
=
∑
i∈I

αif(vi)

=
∑
i∈I

αig(vi)

= g

(∑
i∈I

αivi

)
= g(v).

(2.2.35)

Therefore φ is injective. On the other hand, if β ∈ F I , then

f(v) =
∑
i∈I

αiβi (2.2.36)

defines a function f ∈ V ∗. Therefore f is surjective, and φ is an isomorphism.

Theorem 2.2.21 (Vector space and its dual space are isomorphic when finite-di-
mensional). Let V be a vector space over F . Then V is finite-dimensional if and only
if V ∼= V ∗.
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Proof. Let I be a set such that |I| = dim(V ). Then V ∼= F̂ I by Theorem 2.2.19, and
V ∗ ∼= F I by Theorem 2.2.20. Therefore it suffices to show that F̂ I ∼= F I if and only if I
is finite. Assume I is finite. Then F̂ I = F I , and therefore V ∼= V ∗. Assume I is infinite.
Suppose F is finite. Then

|F | < dim
(
F̂ I
)

= |I| ≤ dim
(
F I
)
. (2.2.37)

Suppose F is infinite. Let B = {bi}i∈I ⊂ V be a basis of V , and g : N→ I be an injective
function. Let C = {fα ∈ F I}α∈F\{0} be such that

fα(i) =

{
αj, if j ∈ g−1{i}
0, otherwise .

(2.2.38)

Let α ∈ F k, such that αi 6= αj, for i 6= j, and consider the equation

k∑
i=1

βifαi
= 0. (2.2.39)

By construction, this implies that for every m ∈ N we have

k∑
i=1

βiα
m
i = 0. (2.2.40)

Considering the first k such equations, we get a matrix equation of the form
α1

1 . . . α1
k

... . . . ...

αk1 . . . αkk



β1

...

βk

 =


0
...

0

 (2.2.41)

The coefficient matrix is a Vandermonde matrix, whose determinant is non-zero, since
αi 6= αj, when i 6= j. Therefore β = 0 is the only solution, and {fα1 , . . . , fαk

} ⊂ V ∗ is
linearly independent. It follows that C is linearly independent, and |F | = |C| ≤ dim

(
F I
)
.

Therefore, whether |F | is finite or infinite,

|F I | = dim
(
F I
)
|F |

= max(dim
(
F I
)
, |F |)

= dim
(
F I
)
.

(2.2.42)

It follows that

dim
(
F̂ I
)

= |I|

< 2|I|

≤ |F ||I|

= dim
(
F I
)
.

(2.2.43)

Therefore F̂ I is not isomorphic to F I by Theorem 2.2.17.
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Theorem 2.2.22 (Solvability is linear dependence). Let V be a vector space over
F , and S ⊂ V . Then S is linearly dependent if and only if there exists v ∈ S such that
v ∈ span(S \ {v}).

Proof. Let S = {vi}i∈I ⊂ V . If S is empty, then the result holds; assume S is not empty.
Assume S is linearly dependent. Then there exists α ∈ F̂ I \ {0} such that∑

i∈I

αivi = 0. (2.2.44)

Since some αj 6= 0, we may solve

vj = − 1

αj

∑
i∈I\{j}

αivi. (2.2.45)

Therefore vj ∈ span(S \ {vj}). Assume vj ∈ span(S \ {vj}). Then there exists α ∈ F̂ I\{j}

such that
vj =

∑
i∈I\{j}

αivi. (2.2.46)

This can be rewritten as
vj −

∑
i∈I\{j}

αivi = 0. (2.2.47)

Since the coefficient of vj is non-zero, S is linearly dependent.

Theorem 2.2.23 (Introducing linear dependence is being in span). Let V be a
vector space over F , B ⊂ V be linearly independent, and v ∈ V . Then

v ∈ span(B)⇔ {v} ∪B is linearly dependent. (2.2.48)

Proof. Let B = {bi}i∈I ⊂ V . Assume v ∈ span(B). Then Theorem 2.2.22 shows that
{v} ∪ B is linearly dependent. Assume {v} ∪ B is linearly dependent, and consider the
equation

αv +
∑
i∈I

βibi = 0, (2.2.49)

where α ∈ F , and β ∈ F̂ I . If α = 0, then the linear independence of B implies β = 0.
Therefore {v} ∪ B is linearly independent; a contradiction. Therefore α 6= 0. But then
we may solve

v =
∑
i∈I

(
−βi
α

)
bi. (2.2.50)

Therefore v ∈ span(B).

Remark 2.2.24. The vectors in a free vector space on X represent formal finite linear
combinations of the elements of X.
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2.3 Bilinear spaces

Let V be a vector space over the field F . A bilinear form in V is a function · : V 2 → F
which is linear in both arguments. A bilinear space is a vector space V over the field
F together with a bilinear form in V . A bilinear form in V , and the V itself, is called

• symmetric, if ∀x, y ∈ V : x · y = y · x,

• skew-symmetric, if ∀x, y ∈ V : x · y = −y · x,

• alternating, if ∀x ∈ V : x · x = 0, and

• reflexive, if ∀x, y ∈ V : x · y = 0⇔ y · x = 0.

The left-radical of a bilinear form in V , and of V , is the subspace

radL(V ) = {u ∈ V : ∀v ∈ V : v · u = 0}, (2.3.1)

and the right-radical of a bilinear form in V , and of V , is the subspace

radR(V ) = {u ∈ V : ∀v ∈ V : u · v = 0}. (2.3.2)

If the left-radical and the right-radical are equal, we may simply speak of the radical of
a bilinear form in V , and of V , and denote it by rad(V ). A bilinear form in V , and V
itself, is called left-non-degenerate on S ⊂ V if

radL(V ) ∩ S = {0}, (2.3.3)

right-non-degenerate on S if

S ∩ radR(V ) = {0}, (2.3.4)

and non-degenerate on S if it is both. A subset S ⊂ V is called null, if v · v = 0 for all
v ∈ S, and orthogonal if

u · v = 0 = v · u, (2.3.5)

for all u, v ∈ S such that u 6= v. Let U,W ⊂ V be subspaces of V . The orthogonal of
U on W is defined by

UW = {w ∈ W : ∀u ∈ U : u · w = 0 = w · u}. (2.3.6)

The orthogonal sum V⊥W of two bilinear spaces V and W is the direct sum of V and
W as vector spaces, together with the bilinear form (V⊥W )2 → F such that

(v1 + w1) · (v2 + w2) = v1 · v2 + w1 · w2, (2.3.7)

where v1, v2 ∈ V , and w1, w2 ∈ W . Let W be a bilinear space over F . A linear function
f : V → W is called orthogonal function if

f(u) · f(v) = u · v, (2.3.8)

for all u, v ∈ V . The orthogonal functions are the homomorphisms of bilinear spaces.
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Remark 2.3.1. We overload the notation · to mean different bilinear forms in different
bilinear spaces. The used arguments reveal which bilinear form is in question.

Theorem 2.3.2 (Radical decomposition). Let V be a bilinear space over F . Then
there exists a left-non-degenerate subspace W ⊂ V such that V ∼= W⊥radL(V ).

Proof. Let B ⊂ rad(V ) be a basis of rad(V ), and C ⊂ V be a basis of V such that
B ⊂ C. Let W = span(C \B). Then V ∼= W⊥rad(V ). Let w ∈ rad(W ), v ∈ V , and
U = rad(V ). Then

w · v = w · vW + w · vU
= w · vW
= 0,

(2.3.9)

since w ∈ rad(W ). Therefore w ∈ rad(V ). Since also w ∈ W , w = 0. Therefore W is
non-degenerate.

Theorem 2.3.3 (An orthogonal non-null set is linearly independent). Let V be
a reflexive bilinear space over F , and B ⊂ V be an orthogonal set of non-null vectors.
Then B is linearly independent.

Proof. Let B = {bi}i∈I , and α ∈ F̂ I . Then for j ∈ I,∑
i∈I

αibi = 0

⇒

(∑
i∈I

αibi

)
· bj = 0

⇒
∑
i∈I

αi(bi · bj) = 0

⇒αj(bj · bj) = 0

⇒αj = 0.

(2.3.10)

Therefore B is linearly independent.

Example 2.3.4 (Orthogonal linearly dependent set). Let · be a reflexive bilinear
form in V , char(F ) 6= 2, and B = {b, b + b} ⊂ V such that b is null, and b 6= 0. Then B
is an orthogonal set, but not linearly independent. Therefore, if B = {b1, . . . , bn} ⊂ V is
an orthogonal set of n vectors, some of which are null, then B may or may not be a basis
for V .

Remark 2.3.5 (Linear independence does not depend on the bilinear form).
The definition of linear independence does not depend on the bilinear form. Therefore
the converse of Theorem 2.3.3 does not hold; a linearly independent set may contain
null vectors (but never 0). Actually, as Theorem 2.4.6 shows, if the bilinear form is
degenerate, then the radical needs to be spanned by null vectors. But even if the bilinear
form is non-degenerate, but indefinite, null-vectors may still exist and be part of a linearly
independent set.
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Theorem 2.3.6 (Non-degenerateness by subspaces). Let V be a reflexive bilinear
space, and let U,W ⊂ V be subspaces of V , such that V ∼= U⊥W . Then V is non-
degenerate if and only if U and W are non-degenerate.

Proof. Assume U and W are non-degenerate. Let v ∈ rad(V ). Then v = vU + vW , for
some vU ∈ U , and vW ∈ W . Let u ∈ U . Then

u · v = u · vU + u · vW
= u · vU
= 0,

(2.3.11)

since v ∈ rad(V ). Therefore vU ∈ rad(U). Since U is non-degenerate, vU = 0. By the
same argument for W , vW = 0. Therefore v = 0, and V is non-degenerate. Assume V is
non-degenerate. Let u ∈ rad(U), and v ∈ V . Then

u · v = u · vU + u · vW
= u · vU
= 0,

(2.3.12)

since u ∈ rad(U). Therefore u ∈ rad(V ). Since V is non-degenerate, u = 0, and U is
non-degenerate. By the same argument for W , W is non-degenerate.

Theorem 2.3.7 (Polarization identity). If the bilinear form · is symmetric, and
char(F ) 6= 2, then

x · y =
1

4
[(x+ y) · (x+ y)− (x− y) · (x− y)]. (2.3.13)

Proof. By bilinearity,

(x+ y) · (x+ y) = x · x+ x · y + y · x+ y · y,
(x− y) · (x− y) = x · x− x · y − y · x+ y · y.

(2.3.14)

Subtracting the second row from the first row gives

(x+ y) · (x+ y)− (x− y) · (x− y) = 2(x · y) + 2(y · x). (2.3.15)

Since the bilinear form is symmetric, and 2 is invertible, the result holds.

Remark 2.3.8 (Quadratic forms correspond mostly to symmetric bilinear forms).
The polarization identity can also be written in other equivalent forms, but this one
has perhaps the most symmetric form. In particular, this theorem shows that, when
char(F ) 6= 2, the quadratic forms and the symmetric bilinear forms represent the same
concept. We choose to use the symmetric bilinear forms, because their bilinearity makes
them more comfortable to use in derivations.

Theorem 2.3.9 (All null is equivalent to trivial when non-degenerate). Let V be
a non-degenerate symmetric bilinear space over F , with char(F ) 6= 2. Then every vector
in V is null if and only if V is trivial.
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Proof. Assume every vector in V is null. Then Theorem 2.3.7 shows that x · y = 0, for
all x, y ∈ V . Therefore rad(V ) = V . Since V is non-degenerate, V is trivial. Assume V
is trivial. Since 0 ∈ V is null, every vector in V is null.

Theorem 2.3.10 (Alternating-symmetric decomposition for bilinear forms).
Let V be a bilinear space over F , with char(F ) 6= 2. Then a bilinear form in V is a sum
of an alternating bilinear form and a symmetric bilinear form.

Proof. Let

⊕ : V 2 → F : x⊕ y =
1

2
[(x · y) + (y · x)], and (2.3.16)

	 : V 2 → F : x	 y =
1

2
[(x · y)− (y · x)]. (2.3.17)

Then x ·y = (x⊕y)+(x	y), and both ⊕ and 	 are bilinear. Now ⊕ is symmetric and 	
is skew-symmetric. Since char(F ) 6= 2, skew-symmetry is equivalent to alternation.

Theorem 2.3.11 (Reflexive is equivalent to symmetric or alternating). A bilinear
form is reflexive if and only if it is symmetric or alternating.

Proof. The following proof is from the book Characters and groups by Larry C. Grove.
Reflexivity is equivalent to

∀u, v, w ∈ V : (u · v)(w · u) = (v · u)(u · w). (2.3.18)

Taking u = v, it follows that

∀v, w ∈ V : (v · v)[w · v − v · w] = 0. (2.3.19)

We would like to to show that this implies alternation or symmetry:

[∀v ∈ V : v · v = 0] or [∀v, w ∈ V : w · v − v · w = 0]. (2.3.20)

Assume this does not hold. Then

[∃y ∈ V : y · y 6= 0] and [∃x, z ∈ V : x · z − z · x 6= 0]. (2.3.21)

The equation 2.3.19 holds in particular for combinations of x, y and z:

(x · x)[z · x− x · z] = 0, (2.3.22)
(z · z)[x · z − z · x] = 0, (2.3.23)
(y · y)[x · y − y · x] = 0, (2.3.24)
(y · y)[z · y − y · z] = 0. (2.3.25)

These equations imply that

x · x = 0, (2.3.26)
z · z = 0, (2.3.27)
x · y = y · x, (2.3.28)
z · y = y · z. (2.3.29)
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Substitute u = x, v = y, and w = z in equation 2.3.18. Then

(x · y)(z · x) = (y · x)(x · z) (2.3.30)
⇒ (2.3.31)

(x · y)[z · x− x · z] = 0 (2.3.32)
⇒ (2.3.33)

x · y = 0, (2.3.34)

since x · y = y · x, and z · x− x · z 6= 0. Substitute u = z, v = y, and w = x in equation
2.3.18. Then

(z · y)(x · z) = (y · z)(z · x) (2.3.35)
⇒ (2.3.36)

(z · y)[x · z − z · x] = 0 (2.3.37)
⇒ (2.3.38)

z · y = 0, (2.3.39)

since z · y = y · z, and z · x− x · z 6= 0. Summarizing our results thus far, we have found
out that for the x, y, and z of equation 2.3.21, it holds that

x · x = 0, (2.3.40)
y · y 6= 0, (2.3.41)
z · z = 0, (2.3.42)
x · y = y · x = 0, (2.3.43)
y · z = z · y = 0, (2.3.44)
x · z 6= z · x. (2.3.45)

Now

x · (y + z) = x · y + x · z = x · z, (2.3.46)
(y + z) · x = y · x+ z · x = z · x. (2.3.47)

By equation 2.3.21,
x · (y + z)− (y + z) · x 6= 0. (2.3.48)

Choose v = y + z and w = x in equation 2.3.19. Then

((y + z) · (y + z))[x · (y + z)− (y + z) · x] = 0 (2.3.49)
⇒ (2.3.50)

(y + z) · (y + z) = 0. (2.3.51)

On the other hand,

(y + z) · (y + z) = y · y + y · z + z · y + z · z (2.3.52)
= y · y 6= 0, (2.3.53)

a contradiction. Thus equation 2.3.20 holds. Therefore · is symmetric or alternating.
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Remark 2.3.12. Reflexivity seems like a natural property to require from a bilinear
form. Therefore, if we are to choose a reflexive bilinear form, then by Theorem 2.3.11 the
choice is between a symmetric bilinear form or an alternating bilinear form. Symmetry
and alternation are a recurring theme in geometry. In general, symmetry encodes lengths
and angles, while alternation encodes volume and linear independence.

Theorem 2.3.13 (Orthogonal complement is a subspace). Let V be a reflexive
bilinear space over F , and S ⊂ V be a subspace of V . Then SV is a subspace of V .

Proof. Let α, β ∈ F , x, y ∈ SV , and z ∈ S. Then

z · (αx+ βy) = α(z · x) + β(z · y)

= 0.
(2.3.54)

Therefore SV is a subspace of V .

Theorem 2.3.14 (Double orthogonal complement is monotone). Let V be a re-
flexive bilinear space over F , and S ⊂ V be a subspace of V . Then

S ⊂ SV
V
. (2.3.55)

Proof. Now

x ∈ SV V

⇔∀y ∈ SV : x · y = 0

⇔∀y ∈ V :
(
y ∈ SV ⇒ x · y = 0

)
⇔∀y ∈ V : ((∀z ∈ S : z · y = 0)⇒ x · y = 0)

⇐x ∈ S.

(2.3.56)

Example 2.3.15. In general, equality does not hold in Theorem 2.3.14. In particular, if
V = rad(V ) uW , for some non-degenerate subspace W ⊂ V , and rad(V ) is not trivial,
then WV = rad(V ), and WV V = V .

Remark 2.3.16. For completeness, we could define the orthogonal quotient as follows.
Let W ⊂ V be a subspace of the bilinear space V , such that V ∼= W⊥WV . The
orthogonal quotient V/W is the quotient space of V and W as vector spaces, together
with the bilinear form (V/W )2 → F such that

(u1 +W ) · (u2 +W ) = u1 · u2, (2.3.57)

where and u1, u2 ∈ WV . Since then V/W ∼= WV , the notion is not so useful; we can
use WV directly. Alternatively, the orthogonal complement can be thought of as the
orthogonal quotient.
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2.4 Finite-dimensional bilinear spaces

Finite-dimensional bilinear spaces are of special interest, because for them we can prove
intuitive theorems for the behaviour of the orthogonal complement. The source of these
theorems relies on the isomorphy of the vector space with its dual, given in the Theorem
2.2.20.

Theorem 2.4.1 (Left-non-degenerate is right-non-degenerate when finite-di-
mensional). Let V be a finite-dimensional bilinear space over F . Then V is left-non-
degenerate if and only if it is right-non-degenerate.

Proof. By the characteristic property of tensor products, the vector space B of bilinear
forms in V is isomorphic to (V ⊗ V )∗. Let f : B → (V ⊗ V )∗ be an isomorphism of
vector spaces. Then

∃v ∈ V \ {0} : v ∈ radL(V )

⇔∃v ∈ V \ {0} : ∀u ∈ V : u · v = 0

⇔∃v ∈ V \ {0} : ∀u ∈ V : f(·)(u⊗ v) = 0

⇔f(·) is not invertible.

(2.4.1)

Similarly one shows radR(V ) non-trivial if and only if f(·) is not invertible. Therefore
radL(V ) is non-trivial if and only if radR(V ) is non-trivial. TODO: not sure of the
second-to-last line.

Remark 2.4.2. Theorem 2.4.1 shows that in finite-dimensional bilinear spaces the con-
cepts of non-degenerate, left-non-degenerate, and right-non-degenerate coincide, even if
the bilinear form isn’t reflexive.

Theorem 2.4.3 (Riesz representation theorem for bilinear spaces). Let V be a
left-non-degenerate bilinear space over F . Then V is finite-dimensional if and only if

V ∗ = {φv : V → F : φv(x) = x · v}v∈V . (2.4.2)

Proof. Let f : V → V ∗ be such that

f(v) = φv. (2.4.3)

Then f is linear, since

f(αx+ βy)(z) = φαx+βy(z)

= z · (αx+ βy)

= α(z · x) + β(z · y)

= αφx(z) + βφy(z)

= αf(x)(z) + βf(y)(z)

= (αf(x) + βf(y))(z),

(2.4.4)

for all x, y, z ∈ V , and α, β ∈ F . Now φv = 0 if and only if v ∈ radL(V ). Since V is
left-non-degenerate, radL(V ) = {0}. Therefore f−1{0} = {0}, and f is injective. Since f
is trivially surjective to f(V ), f(V ) ∼= V . Then f(V ) ∼= V ∗ if and only if V ∼= V ∗, which
is if and only if V is finite-dimensional by Theorem 2.2.21.
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Remark 2.4.4. In Theorem 2.4.3 a similar proof works for the right-non-degenerate case.

Theorem 2.4.5 (Orthogonal basis exists when finite-dimensional and non-de-
generate). Let V be a finite-dimensional non-degenerate symmetric bilinear space over
F , with char(F ) 6= 2. Then V has an orthogonal basis of non-null vectors.

Proof. If V is trivial, then the claim is vacuously true; assume V is not trivial. Since V is
non-degenerate, there exists v ∈ V such that v ·v 6= 0 by Theorem 2.3.9. Let S = span(v).
If S = V , then we are done. Assume S 6= V , and let f : V → S be such that

f(x) =
x · v
v · v

v. (2.4.5)

The restriction of f to S is the identity; therefore the restriction is orthogonal. In addition,
f(V ) = S, f−1{0} = SV , and f is linear and surjective. Now

dim(V ) = dim(S) + dim
(
SV

)
= dim

(
S u SV

)
(2.4.6)

by Theorem 2.2.12, and V = S u SV by Theorem 2.2.17. Since in addition S and
SV are orthogonal by construction, V = S⊥SV . S and SV are both non-degenerate
by Theorem 2.3.6. By induction there exists an orthogonal basis B ⊂ SV of non-null
vectors. By construction, {v} ∪B is then an orthogonal basis of non-null vectors.

Theorem 2.4.6 (Orthogonal basis exists when finite-dimensional). Let V be a
finite-dimensional symmetric bilinear space over F , with char(F ) 6= 2. Then V has an
orthogonal basis B ∪ C ⊂ V such that span(B) = rad(V ), and the vectors in C are
non-null.

Proof. There is a non-degenerate subspace W ⊂ V such that V ∼= W⊥rad(V ) by Theo-
rem 2.3.2. Let B ⊂ rad(V ) be any basis of rad(V ); then B is automatically orthogonal.
There is an orthogonal non-null basis C ⊂ W of W by Theorem 2.4.5. By construction,
B ∪ C is then an orthogonal basis of V .

Theorem 2.4.7 (Orthogonal decomposition). Let V be a finite-dimensional non-
degenerate symmetric bilinear space over F , and S ⊂ V be a subspace of V . Then
V ∼= S⊥SV if and only if S is non-degenerate.

Proof. Assume V ∼= S⊥SV . Then S is non-degenerate by Theorem 2.3.6. Assume S
is non-degenerate. Let A ⊂ V be a non-null orthogonal basis of S, and B ⊂ V be a
non-null orthogonal basis of V , such that A ⊂ B; they exist by Theorem 2.4.5. Since for
all v ∈ A it holds that v · v 6= 0, v /∈ SV . Therefore S ∩ SV = {0}. On the other hand,
by construction every element of B \ A is orthogonal to every element of S. Therefore
SV = span(B \ A), and V = S⊥SV .

Example 2.4.8. Let V = R2 with the non-degenerate symmetric bilinear form

(x1, y1) · (x2, y2) = x1x2 − y1y2. (2.4.7)

Then S = span((1, 1)) is a degenerate subspace of V , and SV = S.
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Theorem 2.4.9 (Non-degenerateness by orthogonal complement). Let V be a
finite-dimensional non-degenerate symmetric bilinear space over F , and S ⊂ V be a
subspace of V . Then SV is non-degenerate if and only if S is non-degenerate.

Proof. S is non-degenerate if and only if V ∼= S⊥SV by Theorem 2.4.7. This is equivalent
to S and SV being non-degenerate by Theorem 2.3.6.

Theorem 2.4.10 (Double orthogonal complement is identity when finite-di-
mensional, non-degenerate, and symmetric). Let V be a finite-dimensional non-
degenerate symmetric bilinear space, and S ⊂ V be a subspace of V . Then S = SV

V if
and only if S is non-degenerate.

Proof. Assume S is non-degenerate. Then

S⊥SV ∼= V ∼= SV⊥SV V (2.4.8)

by Theorem 2.4.7. It follows that

dim(S) + dim
(
SV

)
= dim

(
SV

)
+ dim

(
SV

V
)

(2.4.9)

by Theorem 2.2.17. Therefore dim
(
SV

V
)

= dim(S), and S ∼= SV
V by Theorem

2.2.17. Therefore S = SV
V . Assume S = SV

V , and let v ∈ rad(S). Then v ∈ SS ⊂
SV , and also v ∈ S = SV

V . Therefore v ∈ S ∩ SV . TODO.

2.5 Real bilinear spaces

Let V be a bilinear space over R. A bilinear form in V , and the V itself, is called

• positive-definite, if ∀x ∈ V \ {0} : x · x > 0,

• negative-definite, if ∀x ∈ V \ {0} : x · x < 0,

• definite, if it is either positive-definite or negative-definite,

• positive-semi-definite, if ∀x ∈ V \ {0} : x · x ≥ 0,

• negative-semi-definite, if ∀x ∈ V \ {0} : x · x ≤ 0,

• semi-definite, if it is either positive-semi-definite or negative-semi-definite,

• indefinite, if it is not semi-definite, and

• fulfilling the Cauchy-Schwarz inequality , if ∀x, y ∈ V : (x · y)2 ≤ (x · x)(y · y).

If V is symmetric, then an orthogonal basis B = {bi}i∈I ⊂ V of V is called orthonormal
if bi · bi ∈ {−1, 0, 1}, for all i ∈ I. Let p, q, r ∈ N, and n = p + q + r. Then Rp,q,r is the
vector space Rn over R, together with a symmetric bilinear form · : Rn × Rn → R for
which

ei · ei =


1, if 1 ≤ i ≤ p,

−1, if p < i ≤ p+ q, and
0, if p+ q < i ≤ p+ q + r,

where ei is the i:th standard basis vector of Rn. We denote Rp,q = Rp,q,0.
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Example 2.5.1. An inner product in V is a real positive-definite symmetric bilinear
form in V .

Theorem 2.5.2 (Orthonormal basis exists when finite-dimensional and sym-
metric). Let V be a finite-dimensional symmetric bilinear space over R. Then V has an
orthonormal basis. If V is non-degenerate, then the basis can be chosen non-null.

Proof. There exists an orthogonal basis C = {ci}i∈I of V by Theorem 2.4.6. Let B =
{bi}i∈I ⊂ V be such that

bi =

{
ci√
|ci·ci|

, if ci · ci 6= 0,

ci, if ci · ci = 0.
(2.5.1)

for all i ∈ I. Then B is an orthonormal basis of V . If V is non-degenerate, then C can
be chosen non-null by Theorem 2.4.6, making B a non-null orthonormal basis of V .

Theorem 2.5.3 (Null is in radical when finite-dimensional, symmetric and
semi-definite). Let V be a finite-dimensional symmetric semi-definite bilinear space
over R, and v ∈ V . Then v · v = 0 if and only if v ∈ rad(V ).

Proof. Assume v ∈ rad(V ). Then in particular v · v = 0. Assume v · v = 0. There
exists an orthonormal basis B = {bi}i∈I of V by Theorem 2.5.2. Since V is semi-definite,
bi ·bi ∈ {0, 1}, for all i ∈ I. Let u ∈ V . Since B generates V , there exists unique α, β ∈ F̂ I

such that

u =
∑
i∈I

αibi,

v =
∑
j∈I

βjbj.
(2.5.2)

Then
v · v =

∑
j∈I

β2
j (bj · bj). (2.5.3)

Since v · v = 0, it holds that either βj = 0, or bj · bj = 0, for all j ∈ I. Now

u · v =
∑
i∈I

∑
j∈I

αiβj(bi · bj)

=
∑
i∈I

αiβi(bi · bi)

= 0.

(2.5.4)

Therefore v ∈ rad(V ).

Theorem 2.5.4 (Cauchy-Schwarz is equivalent to semi-definitiness when finite-di-
mensional and symmetric). Let V be a finite-dimensional symmetric bilinear space
over R. Then the Cauchy-Schwarz inequality holds if and only if V is semi-definite.
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Proof. Assume the Cauchy-Schwarz inequality holds but that V is indefinite. Then there
exists x, y ∈ V such that x · x > 0 and y · y < 0. Then (x · y)2 ≤ (x · x)(y · y) does
not hold since the left-hand side is non-negative and the right-hand side is negative;
a contradiction. Therefore V is semi-definite. Assume V is positive-semi-definite; the
proof for the negative-semi-definite case is similar. If y · y = 0, then x · y = 0 by Theorem
2.5.3, and the Cauchy-Schwarz inequality holds. If y · y 6= 0, then the Cauchy-Schwarz
inequality can be modified to the following equivalent form:

∀y ∈ V : |x‖ · x‖| ≤ |x · x|,

where x‖ = x·y
y·yy is the orthogonal projection of x to y, and x⊥ = x− x‖ is the rejection

of x from y. Then

x‖ · x‖ ≤ x‖ · x‖ + x⊥ · x⊥ (2.5.5)
= x‖ · x‖ + 2x⊥ · x‖ + x⊥ · x⊥ (2.5.6)
= (x‖ + x⊥) · (x‖ + x⊥) (2.5.7)
= x · x, (2.5.8)

where we used the fact that x‖ ·x⊥ = 0. Since V is positive-semi-definite, |x‖ ·x‖| ≤ |x ·x|.
Therefore the Cauchy-Schwarz inequality holds.

Example 2.5.5. The bilinear form in Rp,q,r is positive-definite if p = n, negative definite
if q = n, positive-semi-definite if q = 0, negative-semi-definite if p = 0, indefinite if both
p > 0 and q > 0, and non-degenerate if r = 0.

Theorem 2.5.6 (Finite-dimensional bilinear spaces can be implemented on a
computer). Let V be a finite-dimensional symmetric bilinear space of signature (p, q, r)
over R. Then V is isomorphic to Rp,q,r.

Proof. Let n = dim(V ). There exists an orthonormal basis B = {b1, . . . , bn} ⊂ V by
Theorem 2.5.2. This basis can be reordered such that

bi · bi =


1, if 1 ≤ i ≤ p,

−1, if p < i ≤ p+ q, and
0, if p+ q < i ≤ p+ q + r.

Let φ : V → Rp,q,r be a linear function such that ∀i ∈ [1, n] : φ(bi) = ei, where ei ∈ Rn is
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the i:th standard basis vector. Then φ is bijective, linear, and

φ(x) · φ(y) = φ

(
n∑
i=1

xibi

)
· φ

(
n∑
j=1

yjbj

)

=

(
n∑
i=1

xiφ(bi)

)
·

(
n∑
j=1

yjφ(bj)

)

=

(
n∑
i=1

xiei

)
·

(
n∑
j=1

yjej

)

=

p∑
i=1

xiyi −
p+q∑
i=p+1

xiyi

=

(
n∑
i=1

xibi

)
·

(
n∑
j=1

yjbj

)
= x · y.

(2.5.9)

Therefore V is isomorphic to Rp,q,r as a bilinear space.

Remark 2.5.7. By Theorem 2.5.6, for computational purposes we may always concen-
trate on Rp,q,r without loss of generality, rather than on an abstract real vector space V
with a symmetric bilinear form of signature (p, q, r).

2.6 Tensor product

Let {Vi}i∈I be a set of vector spaces over F , Ui be the free vector space on Vi, and
W =

⊕
i∈I Ui. Let S ⊂ W be a subspace of W defined by

S =

{
f ∈ W : ∀i ∈ I :

∑
v∈Vi

fi(v)v = 0

}
. (2.6.1)

Then the tensor product of {Vi}i∈I is defined by⊗
i∈I

Vi = W/S. (2.6.2)

When I = ∅, the tensor product is defined to be F . In the common case where Vi = V for
all i ∈ I, the tensor product is denoted by V ⊗I , and called the I-fold tensor product.
The elements of V ⊗I are called I-vectors.

Remark 2.6.1 (Intuition for the tensor product). The free vector space Ui contains
finite linear combinations fi ∈ Ui of the elements of Vi, encoded such that fi(v) gives
the weight of the element v ∈ Vi. The linear combination fi represents the element∑

v∈Vi fi(v)v ∈ Vi, which is valid since fi is non-zero only at finitely many positions. If
f, g ∈ W and fi − gi represents the zero vector for all i ∈ I (that is, f − g ∈ S), then f
and g represent the same vector in

⊕
i∈I Vi. These linear combinations are identified by

the quotient W/S.
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Remark 2.6.2 (Notation for the tensor product). Being a quotient vector space,
the elements of the tensor product are equivalence classes. Notationally, however, we will
work with their class representatives instead. We will demonstrate the notation for the
tensor product U ⊗ V , where U and V are vector spaces over R. Let [f ] = [(fU , fV )] ∈
U ⊗ V , where the brackets denote the equivalence class of the class representative. Each
linear combination is written as an explicit sum, as in fU ∼ 2u1 − 4u2, and fV ∼ v,
where u1, u2 ∈ U , and v ∈ V . We group the linear combinations fU and fV together by
juxtaposition, as in f = (fU , fV ) ∼ (2u1 − 4u2)v. Finally, we leave out the equivalence
class brackets. It then makes sense to write an equation such as

(2u1 − 4u2)v = 2u1v − 4u2v. (2.6.3)

This is similar to the use of rational numbers, where one writes equations of the form
1/1 = 2/2.

Remark 2.6.3. The tensor product of a single vector space V is isomorphic to V .

Example 2.6.4. The elements of V ⊗2 are called 2-vectors.

2.7 Algebras

An algebra over a field, from now on simply an algebra, is a vector space V over F
together with a bilinear function ~ : V 2 → V , called the product in V . The product is
usually denoted by juxtaposition. The algebra, and the product, is called

• associative, if ∀x, y, z ∈ V : (xy)z = x(yz),

• commutative, if ∀x, y ∈ V : xy = yx,

• unital, if ∃e0 ∈ V : ∀x ∈ W : e0x = x = xe0, and

The element e0 above, it it exists, is called the identity element of V . If for elements
x, y ∈ V , with x 6= 0, there exists a unique element rL ∈ V such that y = rLx and a
unique element rR ∈ V such that y = xrR, then V is called a division algebra. Let V be
an associative unital algebra. If for an element x ∈ V there exists an element y ∈ V such
that xy = yx = e0, then y is called an inverse of x. For any algebra V , a sub-algebra of
V is a subspace of V which is closed under the product operation. Let W be an algebra
over F . The external direct sum V ⊕W of algebras V and W is the external direct
sum of V and W as vector spaces, together with the product (V ⊕W )2 → V ⊕W defined
by (v1, w2)(v2, w2) 7→ (v1v2, w1w2), for all v1, v1 ∈ V , and w1, w2 ∈ W . The internal
direct sum of sub-algebras is defined similarly. The tensor product of algebras is
the tensor product of vector spaces, together with a bilinear product which applies the
component products element-wise, e.g. (u1⊗v1)(u2⊗v2) 7→ (u1u2)⊗ (v1v2). An algebra
homomorphism is a linear function f : V → W which preserves multiplication, i.e.

f(xy) = f(x)f(y), (2.7.1)

for all x, y ∈ V . The set of algebra homomorphisms from V to W is denoted by
Hom(V,W ). If algebras V and W are unital, then an algebra homomorphism is also
required to preserve the identity element, i.e. if f ∈ Hom(V,W ), then

f(e0
V ) = e0

W . (2.7.2)
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An algebra anti-homomorphism is a linear function f : V → W which preserves
multiplication, but reverses its order, i.e.

f(xy) = f(y)f(x), (2.7.3)

for all x, y ∈ V .

Example 2.7.1. A field is a commutative division algebra over itself.

Theorem 2.7.2 (Identity element is unique in an algebra). If an algebra W has
an identity element e0 ∈ W , then it is unique.

Proof. Assume e0, e
′
0 ∈ W are both identity elements of W . Then

e′0 = e′0e0 = e0.

Theorem 2.7.3 (Inverses are unique in an associative unital algebra). In an
associative unital algebra W , inverses are unique.

Proof. Assume y, y′ ∈ W are both inverses of x ∈ W . Then

y′ = y′(xy) = (y′x)y = y.

Theorem 2.7.4 (Division algebra for associative unital algebras). An associative
unital algebra W is a division algebra if and only if every element in W \ {0} has an
inverse.

Proof. Assume W is a division algebra, and x ∈ W \ {0}. Then in particular there exists
unique rL, rR ∈ W such that e0 = rLx = xrR. Thus

rL = rL(xrR) = (rLx)rR = rR,

and x−1 = rL = rR. Therefore every element in W \ {0} has an inverse. Assume every
element in W \ {0} has an inverse, and let x, y ∈ W , with x 6= 0. Then y = y(x−1x) =
(yx−1)x and y = (xx−1)y = x(x−1y). Since by Theorem 2.7.3 inverses are unique in W ,
so are yx−1 and x−1y. Therefore W is a division algebra.

Theorem 2.7.5 (Sum of homomorphisms of unital algebras is not a homo-
morphism). Let V and W be associative unital algebras, and f, g ∈ Hom(V,W ). Then
f + g /∈ Hom(V,W ).

Proof. Now
(f + g)(1) = f(1) + g(1) = 1 + 1. (2.7.4)

Since an algebra homomorphism must preserve the identity element, this implies 1+1 = 1,
which in any field is equivalent to 1 = 0; a contradiction. Therefore f + g is not a
homomorphism.

Theorem 2.7.6 (Frobenius theorem). Let V be a finite-dimensional associative division-
algebra over R. Then V is isomorphic to either R, C, or H.

Remark 2.7.7. Since Clifford algebras are finite-dimensional associative algebras, Theo-
rem 2.7.6 shows that those Clifford algebras not isomorphic to R, C, or H will necessarily
contain zero divisors.
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2.8 Tensor algebra

Let V be a vector space over F . The tensor algebra T (V ) of V is the direct sum

T (V ) =
⊕
k∈N

V ⊗k (2.8.1)

as vector spaces, together with a bilinear product T (V ) × T (V ) → T (V ), denoted by
juxtaposition, defined by

(a1 · · · ak)(b1 · · · bl) = a1 · · · akb1 · · · bl, (2.8.2)

where {a1, . . . , ak} ⊂ V , {b1, . . . , bl} ⊂ V , and k, l ∈ N. The elements of T (V ) are called
multi-vectors.

Remark 2.8.1 (Notation for tensor algebra). Building on the notation for tensor
products, the elements of tensor algebra are written in the form 4 + 3u− (u+ v)w, where
u, v, w ∈ V , as is usual for direct sums. While strictly speaking there are two different
plus operators in this expression, this abuse of notation does not cause any confusion.

2.9 Magnitude

Let V be a vector space over R. A function f : V → R is called

• positive-homogeneous, if ∀x ∈ V : ∀α ∈ R : f(αx) = |α|f(x),

• additive, if ∀x, y ∈ V : f(x+ y) = f(x) + f(y),

• sub-additive, if ∀x, y ∈ V : f(x+ y) ≤ f(x) + f(y),

• convex if ∀x, y ∈ V : ∀t ∈ [0, 1] ⊂ R : f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y),

• quasi-convex, if ∀x, y ∈ V : ∀t ∈ [0, 1] ⊂ R : f((1−t)x+ty) ≤ max{f(x), f(y)}, and

• positive-definite, if ∀x ∈ V : f(x) ≥ 0 and f(x) = 0⇔ x = 0.

A semi-magnitude in V is a function f : V → R such that it is non-negative and
positive-homogeneous. A magnitude in V is a positive-definite semi-magnitude in V . A
semi-norm in V is a sub-additive semi-magnitude in V . A norm V is a positive-definite
semi-norm in V . If V is actually an algebra over R, then the f is called

• multiplicative, if ∀x, y ∈ V : f(xy) = f(x)f(y),

• sub-multiplicative, if ∀x, y ∈ V : f(xy) ≤ f(x)f(y).

Remark 2.9.1. Sub-additivity is also known as the triangle inequality.

Remark 2.9.2. The definitions for magnitudes are my own.

Theorem 2.9.3 (Convexity is sub-additivity when positive-homogeneous). Let
f : V → R be a positive-homogeneous function. Then f is convex if and only if it is
sub-additive.
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Proof. Assume f is convex. Then

f(x+ y) = 2f(0.5x+ 0.5y) (2.9.1)
≤ 2(f(0.5x) + f(0.5y)) (2.9.2)
= f(x) + f(y). (2.9.3)

Therefore f is sub-additive. Assume f is sub-additive. Let t ∈ [0, 1] ∈ R. Then

f((1− t)x+ ty) ≤ f((1− t)x) + f(ty) (2.9.4)
= (1− t)f(x) + tf(y). (2.9.5)

Therefore f is convex.

Theorem 2.9.4 (Convexity implies quasi-convexity). Let f : V → R be a convex
function. Then f is quasi-convex.

Proof. Assume f is convex. Let x, y ∈ V , and t ∈ [0, 1] ⊂ R. Then

f((1− t)x+ tf(y)) ≤ (1− t)f(x) + tf(y) (2.9.6)
≤ (1− t) max{f(x), f(y)}+ tmax{f(x), f(y)} (2.9.7)
= max{f(x), f(y)}. (2.9.8)

Therefore f is quasi-convex.

Theorem 2.9.5 (Quasi-convexity implies convexity when non-negative posi-
tive-homogeneous). Let f : V → R be a non-negative positive-homogeneous quasi-
convex function. Then f is convex.

Proof. For x, y ∈ V , let

t =
f(y)

f(x) + f(y)
.

Then

f

(
x+ y

f(x) + f(y)

)
= f

(
(1− t) x

f(x)
+ t

y

f(y)

)
(2.9.9)

≤ max

{
f

(
x

f(x)

)
, f

(
y

f(y)

)}
(2.9.10)

= 1. (2.9.11)

Using positive-homogenuity and non-negativeness,

f(x+ y) ≤ f(x) + f(y).

Thus f is sub-additive. By Theorem 2.9.3 this is equivalent to the convexity of f . There-
fore f is convex.

Remark 2.9.6 (Quasi-convexity is equivalent to sub-level sets being convex).
Quasi-convexity of f : V → R is equivalent to the sub-level sets of f being convex, which
gives an intuitive understanding of a semi-norm. In general quasi-convexity of f is not
equivalent to the convexity of f ; for non-negative positive-homogeneous functions f it is.
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Theorem 2.9.7 (Semi-definiteness is sub-additivity when symmetric). Let · :
V 2 → R be a symmetric bilinear form, and ‖·‖ : V → R : ‖x‖ =

√
|x · x|. Then · is

semi-definite if and only if ‖·‖ is sub-additive.

Proof. Assume · is indefinite. By indefiniteness there exists x, y ∈ V such that x · x > 0
and y · y < 0. Now one can solve the quadratic equation ‖(1− t)x+ ty‖ = 0 for t ∈ R.
The solution is

t =
x · (x+ y)±

√
(x · y)2 − (x · x)(y · y)

(x+ y) · (x+ y)
.

The discriminant is always positive, since (x · x)(y · y) < 0. Therefore, there are two
points a, b ∈ V , with ‖a‖ = 0 and ‖b‖ = 0, which lie on the same line as x and y.
Either x or y is a convex combination of a and b. Without loss of generality, assume it
is x. If ‖·‖ were convex, it would hold that ‖x‖ = 0. Since this is not the case, ‖·‖ is
not convex. By Theorem 2.9.3 this is equivalent to ‖·‖ not being sub-additive. Assume
· is semi-definite. Then the Cauchy-Schwarz inequality holds by Theorem 2.5.4. By
semi-definiteness (x · x)(y · y) ≥ 0. Now

‖x+ y‖2 = |(x+ y) · (x+ y)| (2.9.12)
= |x · x+ 2x · y + y · y| (2.9.13)
≤ |x · x|+ 2|x · y|+ |y · y| (2.9.14)
≤ |x · x|+ 2

√
(x · x)(y · y) + |y · y| (2.9.15)

= |x · x|+ 2
√
|x · x|

√
|y · y|+ |y · y| (2.9.16)

= (‖x‖+ ‖y‖)2. (2.9.17)

Thus ‖·‖ is sub-additive.

Theorem 2.9.8 (Norm from a symmetric bilinear form). Let · be a symmetric
bilinear form in R. Then ‖·‖ : V → R : ‖x‖ =

√
|x · x| is a semi-norm (norm) if and

only if · is semi-definite (definite).

Proof. Clearly ‖·‖ is non-negative. Homogenuity is shown by

‖αx‖2 = |(αx) · (αx)| (2.9.18)
= α2|x · x| (2.9.19)
= α2‖x‖2. (2.9.20)

where α ∈ R, and x ∈ V . By Theorem 2.9.7, · is sub-additive if and only if it is semi-
definite. The · is definite if and only if ‖·‖ is positive-definite.

2.10 Topological spaces

Let X be a set. A set TX ⊂ P(X) is called a topology on X, if

• ∅ ∈ TX ,

• O1 ∩O2 ∈ TX , for all O1, O2 ∈ TX ,

•
⋃
i∈I Oi ∈ TX , for all {Oi}i∈I ⊂ TX ,
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• X ∈ TX .

A topological space is a set X together with a topology TX on X. An element O ∈ TX
is called an open set of X. Let S ⊂ X. A neighborhood of S in X is an open set
OS ∈ TX such that S ⊂ OS. The set of neighborhoods of S in X is denoted by TX(S). If
p ∈ X, then we will abbreviate TX(p) = TX({p}). A closed set of X is an element of

CX = {X \ U : U ∈ TX}. (2.10.1)

The set of closed sets containing S is denoted by CX(S). The closure of S on X is
defined by

S =
⋂

CX(S). (2.10.2)

A subset BX ⊂ TX is called a basis of X, if

TX =
{⋃

S : S ⊂ BX

}
. (2.10.3)

In this case we also say that BX generates TX . A subset BX(p) ⊂ TX(p) is called a
neighborhood basis at p ∈ X, if

∀Op ∈ TX(p) : ∃O′p ∈ BX(p) : O′p ⊂ Op. (2.10.4)

Let Y be a topological space. The product space X × Y of X and Y is the set X × Y ,
together with a topology generated by

BX×Y = {O ×N : O ∈ TX , N ∈ TY }, (2.10.5)

called the product topology. Let X and Y be topological spaces, f : X → Y be a
function, p ∈ X, and y ∈ Y . Then y is a limit of f at p, denoted limx→p f(x) = y, if

∀Oy ∈ TY (y) : ∃Op ∈ TX(p) : f(Op \ {p}) ⊂ Oy. (2.10.6)

A function f : X → Y is called continuous at p ∈ X, if

lim
x→p

f(x) = f(p), (2.10.7)

and continuous, if it is continuous for all p ∈ X.

Remark 2.10.1 (Being open or closed is not exclusive). Subsets of X may be open,
closed, open and closed, or neither open or closed. For example, ∅ and X are always both
open and closed.

Theorem 2.10.2 (Continuity by open sets). Let X and Y be topological spaces, and
f : X → Y be a function. Then f is continuous if and only if f−1(O) ∈ TX , for all
O ∈ TY .

Theorem 2.10.3 (Continuity is local). Let X and Y be topological spaces, and f :
X → Y be a function. Then f is continuous if and only if f is continuous at p for all
p ∈ X.
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Theorem 2.10.4 (Limit by neighborhood bases). Let X and Y be topological spaces,
BX(p) be a neighborhood basis at p ∈ X, BY (y) be a neighborhood basis at y ∈ Y , and
f : X → Y be a function. Then limx→p f(x) = y if and only if

∀Ny ∈ BY (y) : ∃Op ∈ BX(p) : f(Op \ {p}) ⊂ Ny. (2.10.8)

Proof. Assume limx→p f(x) = y, and let Ny ∈ BY (y). Then there exists Op ∈ TX(p) such
that f(Op\{p}) ⊂ Ny. Since BX(p) is a neighborhood basis at p, there exists O′p ∈ BX(p)
such that O′p ⊂ Op. Now f(O′p \ {p}) ⊂ Ny, and the result holds. Assume the formula
holds. Let Ny ∈ TY (y). Since BY (y) is a neighborhood basis, there exists N ′y ∈ BY (y)
such that N ′y ⊂ Ny. Then by the formula there exists Op ∈ BX(p) ⊂ TX(p) such that
f(Op \ {p}) ⊂ N ′y ⊂ Ny. Therefore limx→p f(x) = y.

Theorem 2.10.5 (Moving limit in). Let X, Y , and Z be topological spaces, p ∈ X,
f : X → Y be such that limx→p f(x) = y, and g : Y → Z be continuous at y. Then

lim
x→p

g(f(x)) = g(y). (2.10.9)

Proof. Let Og(y) ∈ TZ(g(y)). Since g is continuous at y, there exists Ny ∈ TY (y) such that
g(Ny) ⊂ Og(y). Since limx→p f(x) = y, there exists Mp ∈ TX(p) such that f(Mp \ {p}) ⊂
Ny. Therefore g(f(Mp \ {p})) ⊂ Og(y).

2.11 Topological vector spaces

A topological vector space is a vector space V together with a topology on V , such that
addition and multiplication are continuous functions. The continuous linear functions are
the homomorphisms of topological vector spaces.

Theorem 2.11.1 (Linear is continuous with finite-dimensional domain). Let
U be a finite-dimensional topological vector space, V be a topological vector space, and
f : U → V be a linear function. Then f is continuous.

Theorem 2.11.2 (Continuity at a point is continuity for linear functions). Let
U and V be topological vector spaces, and f : U → V be a linear function. Then f is
continuous if and only if f is continuous at p ∈ U .

Proof. Assume f is continuous. Then f is continuous at p by definition. Assume f is
continuous at p, and let q ∈ U . LetNf(q) ∈ TV (f(q)). ThenNf(p) = Nf(q)+(f(p)−f(q)) ∈
TV (f(p)), since addition by constant is a homeomorphism. Since f is continuous at p,
there exists Op ∈ TU(p) such that f(Op) ⊂ Nf(p). Then Oq = Op + (q − p) ∈ TU(q) is
such that

f(Oq) = f(Op + (q − p))
= f(Op) + (f(q)− f(p))

⊂ Nf(p) + (f(q)− f(p))

= Nf(q).

(2.11.1)

Therefore f is continuous at q. Since this holds for all q ∈ U , f is continuous.
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Theorem 2.11.3 (Sum of limits is the limit of sum). Let X be a topological space, V
be a Hausdorff topological vector space over a topological field F , p ∈ X, and f, g : X → V
be functions, such that the limit of f at p exists, and the limit of g at p exists. Then

lim
x→p

[f(x) + g(x)] = lim
x→p

f(x) + lim
x→p

g(x). (2.11.2)

Proof. Let u = limx→p f(x), and v = limx→p g(x). Let Nu+v ∈ TV (u+ v). Since V is a
topological vector space, addition is continuous. Therefore +−1(Nu+v) ∈ TV 2 . Because
of the product topology on V 2, there exists Nu ∈ TV (u), and Nv ∈ TV (v) such that
Nu × Nv ⊂ +−1(Nu+v). By the definition of u and v, there exists Op ∈ TX(p) such that
f(Op \{p}) ⊂ Nu, and g(Op \{p}) ⊂ Nv. Therefore f(Op \{p})+g(Op \{p}) ⊂ Nu+v.

Theorem 2.11.4 (Scaling commutes with limits). Let X be a topological space, V
be a Hausdorff topological vector space over a topological field F , p ∈ X, α ∈ F , and
f : X → V be a function. Then the limit of f at p exists if and only if the limit of αf at
p exists, and

lim
x→p

αf(x) = α lim
x→p

f(x). (2.11.3)

Proof. Assume limx→p f(x) exists. Let g : V → V be such that g(u) = αu. Since V is a
topological vector space, multiplication is continuous, and then so is g. The result follows
from Theorem 2.10.5. Assume limx→p αf(x) exists. The result holds trivially for α = 0.
Assume α 6= 0. Then by the previous result

1

α
lim
x→p

(αf)(x) = lim
x→p

1

α
(αf)(x)

= lim
x→p

f(x).
(2.11.4)

2.12 Norm spaces

A norm space is a vector space V over a normed field F , together with a norm in V .
An open ball in V is defined by

BV (p, δ) = {v ∈ V : ‖v − p‖ < δ}, (2.12.1)

and a closed ball in V is defined by

BV (p, δ) = {v ∈ V : ‖v − p‖ ≤ δ}, (2.12.2)

where p ∈ V , and δ ∈ R. The set of open balls at p is denoted by BV (p), and the set of
closed balls at p is denoted by BV (p). A sphere in V is defined by

SV (p, δ) = {v ∈ V : ‖v − p‖ = δ}, (2.12.3)

where p ∈ V , and δ ∈ R. A set S ⊂ V is called bounded, if S is contained in some (open
or closed) ball. A topology, called the norm topology, is defined on V by generating it
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from the open balls of U . Let U be a norm space, and f : U → V be a linear function.
Then the operator norm of f is defined by

‖f‖ = sup
u∈U\{0}

‖f(u)‖
‖u‖

. (2.12.4)

The f is called bounded, if ‖f‖ <∞.

Remark 2.12.1. The open balls at p ∈ V form a neighborhood basis at p. Thus the
notation BV (p) is consistent with neighborhood bases.

Remark 2.12.2. A closed ball BV (p, δ) is the closure of BV (p, δ). Thus the notation for
closed balls is consistent with closures.

Theorem 2.12.3 (Reverse triangle inequality). Let U be a norm space over F , and
u, v ∈ U . Then

|‖u‖ − ‖v‖| ≤ ‖u− v‖. (2.12.5)

Proof. By the sub-additivity of the norm

‖u‖ − ‖v‖ = ‖u− v + v‖ − ‖v‖
≤ ‖u− v‖+ ‖v‖ − ‖v‖
= ‖u− v‖.

(2.12.6)

Similarly, ‖v‖ − ‖u‖ ≤ ‖v − u‖.

Theorem 2.12.4 (Norm is continuous in a norm space). Let V be a norm space
over F . Then the norm in V is continuous.

Proof. This is shown by Theorem 2.12.3.

Theorem 2.12.5 (All finite-dimensional norms are continuous). Let V be a finite-
dimensional norm space, and let ‖ · ‖b : V 2 → R be another norm in V . Then ‖ · ‖b is
continuous.

Proof.

Theorem 2.12.6 (Scalar multiplication is continuous in a norm space). Let V
be a norm space over F . Then scalar multiplication is a continuous function F ×V → V .

Proof. Let ε ∈ R+, u, v ∈ V , and α, β ∈ F . We will show that scalar multiplication is
continuous at (α, u). By the sub-additivity of the norm

‖αu− βv‖ = ‖αu− βu+ βu− βv‖
= ‖(α− β)u+ β(u− v)‖
≤ |α− β|‖u‖+ |β|‖u− v‖.

(2.12.7)

Let β be such that
|α− β|‖u‖ < ε

2
, (2.12.8)

41



and let v be such that
|β|‖u− v‖ < ε

2
, (2.12.9)

which are possible since norm are continuous by Theorem 2.12.4. Then

‖αu− βv‖ ≤ |α− β|‖u‖+ |β|‖u− v‖

<
ε

2
+
ε

2
= ε.

(2.12.10)

Therefore scalar multiplication is continuous at (α, u). Since this holds for every point,
addition is continuous by Theorem 2.10.3.

Theorem 2.12.7 (Addition is continuous in a norm space). Let V be a norm space
over F . Then addition is a continuous function V 2 → V .

Proof. Let ε ∈ R+, u1, u2, v1, v2 ∈ V . We will show that addition is continuous at
(u1, v1) ∈ V 2. By the sub-additivity of the norm

‖(u1 + v1)− (u2 + v2)‖ = ‖(u1 − u2) + (v1 − v2)‖
≤ ‖u1 − u2‖+ ‖v1 − v2‖.

(2.12.11)

Let u2 and v2 be such that

‖u1 − u2‖ <
ε

2
,

‖v1 − v2‖ <
ε

2
,

(2.12.12)

which is possible since the norm is continuous by Theorem 2.12.4. Then

‖(u1 + v1)− (u2 + v2)‖ ≤ ‖u1 − u2‖+ ‖v1 − v2‖

<
ε

2
+
ε

2
= ε.

(2.12.13)

Therefore addition is continuous at (u1, v1). Since this holds for every point, addition is
continuous by Theorem 2.10.3.

Theorem 2.12.8 (Norm space is a topological vector space). Let V be a norm
space over F . Then V is a topological vector space.

Proof. Addition in V is continuous by Theorem 2.12.7, and scalar multiplication in V is
continuous by Theorem 2.12.6. Therefore V is a topological vector space.

Theorem 2.12.9 (Spheres are closed and bounded). Let V be a norm space over
F . Then a sphere in V is closed and bounded.

Proof. Let p ∈ V , and δ ∈ R. Now

SV (p, δ) = BV (p, δ) \BV (p, δ)

= BV (p, δ) ∩ (V \BV (p, δ))
(2.12.14)

is closed in V , since a closed ball is closed in V , an open ball is open in V with a closed
complement, and since the intersection of closed sets is closed. Since SV (p, δ) is contained
in BV (p, δ), a sphere is also bounded.
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Theorem 2.12.10 (Finite-dimensional norms are equivalent). Let V be a finite-
dimensional norm space, and let ‖ · ‖b : V 2 → R be another norm in V . Then ‖ · ‖ and
‖ · ‖b are equivalent.

Proof. The unit sphere SV (0, 1) is closed and bounded in V by Theorem 2.12.9, and
compact in V by the Heine-Borel theorem. The ‖ · ‖b is a continuous function by Theorem
2.12.5; so is its restriction to SV (0, 1). Then there exists α, β ∈ R such that

α = min
‖u‖=1

‖u‖b,

β = max
‖u‖=1

‖u‖b
(2.12.15)

by the extreme value theorem. Therefore

α ≤
∥∥∥∥ v

‖v‖

∥∥∥∥
b

≤ β, (2.12.16)

for all v ∈ V \ {0}. It follows that

α‖v‖ ≤ ‖v‖b ≤ β‖v‖, (2.12.17)

for all v ∈ V (the case v = 0 holds trivially).

Theorem 2.12.11 (Finite-dimensional norm topology is unique). Let V be a
finite-dimensional norm space. Then the norm topology of V does not depend on the
norm.

Proof. Since any two norms on a finite-dimensional vector space are equivalent by The-
orem 2.12.10, they agree on which sets are open and which are not.

Theorem 2.12.12 (Alternative forms for the operator norm). Let U and V be
norm spaces over F , f : U → V be a linear function, and S ⊂ R \ {0}, S 6= ∅. Then

‖f‖ = sup
‖u‖∈S

‖f(u)‖
‖u‖

. (2.12.18)

Proof. Since the norm is positive-homogeneous, and f is linear,

‖f(u)‖
‖u‖

=

∥∥∥∥f(u)

‖u‖

∥∥∥∥ =

∥∥∥∥f( u

‖u‖

)∥∥∥∥, (2.12.19)

for all u ∈ U \ {0}. Therefore the value of ‖f(u)‖
‖u‖ is independent of ‖u‖, and we may as

well concentrate on u such that ‖u‖ ∈ S.

Example 2.12.13. Some reoccurring forms for the operator norm include

‖f‖ = sup
‖u‖=1

‖f(u)‖

= sup
0<‖u‖<δ

‖f(u)‖
‖u‖

= sup
‖u‖>δ

‖f(u)‖
‖u‖

,

(2.12.20)

where δ ∈ R+.

43



Theorem 2.12.14 (Continuous is bounded for linear functions). Let U and V be
norm spaces over F , and f : U → V be a linear function. Then f is continuous if and
only if it is bounded.

Proof. Assume f is continuous. Since a norm space is a topological vector space by
Theorem 2.12.8, and f is linear, this is equivalent to f being continuous at 0 by Theorem
2.11.2. Therefore there exists δ ∈ R+ such that

‖f(u)− f(0)‖ = ‖f(u)‖ < 1, (2.12.21)

for all u ∈ U such that ‖u‖ < δ. Then

‖f(u)‖
‖u‖

=

∥∥∥∥f( u

‖u‖

)∥∥∥∥
=

∥∥∥∥1

δ
f

(
δ
u

‖u‖

)∥∥∥∥
=

1

|δ|

∥∥∥∥f(δ u

‖u‖

)∥∥∥∥
<

1

|δ|
,

(2.12.22)

for all u ∈ U such that 0 < ‖u‖ < δ. Therefore f is bounded by Theorem 2.12.12.
Assume f is bounded. Then

‖f(u)− f(0)‖ = ‖f(u)‖
≤ ‖f‖‖u‖,

(2.12.23)

for all u ∈ U \{0}. If ε ∈ R+, then letting ‖u− 0‖ = ‖u‖ < ε
‖f‖ shows that f is continuous

at 0. Therefore f is continuous.

2.13 Total derivative

Let U and V be norm spaces over R, S ⊂ U , p ∈ S, and f : S → V be a function. The
differencing at p is a partial function ∆p : V S → V S−p such that

∆p(f)(u) = f(p+ u)− f(p). (2.13.1)

The ∆p(f) is called the difference of f at p. The differentiation at p is a partial
function Dp : V S → V S−p such that Dp(f) is a continuous linear function, and

lim
u→0

‖Dp(f)(u)−∆p(f)(u)‖
‖u‖

= 0 (2.13.2)

in the subspace topology of S − p. The f is called differentiable at p, if Dp(f) exists,
and differentiable, if f is differentiable at p for every p ∈ S. If f is differentiable at p,
then the Dp(f) is called the total derivative of f at p.

Remark 2.13.1. The total derivative is also known as the Fréchet derivative.
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Remark 2.13.2. The subset S ⊂ U in the definition of the total derivative is arbitrary.
In particular, it need not be open in U .

Theorem 2.13.3 (Total derivative is unique). Let U and V be norm spaces over R,
S ⊂ U , p ∈ S, and f : S → V be differentiable at p. Then Dp(f) is unique.

Proof. Let Dp(f)1 and Dp(f)2 both be total derivatives of f at p. By the definition of
the limit, for every ε ∈ R+ there exists δ ∈ R+ such that

‖∆p(f)(u)−Dp(f)1(u)‖ < ‖u‖ε/2,
‖∆p(f)(u)−Dp(f)2(u)‖ < ‖u‖ε/2,

(2.13.3)

for all u ∈ S such that 0 < ‖u‖ < δ. By the sub-additivity of the norm,

‖Dp(f)2(u)−Dp(f)1(u)‖ = ‖[∆p(f)(u)−Dp(f)1(u)]− [∆p(f)(u)−Dp(f)2(u)]‖
≤ ‖∆p(f)(u)−Dp(f)1(u)‖+ ‖∆p(f)(u)−Dp(f)2(u)‖
< ‖u‖ε,

(2.13.4)

for all u ∈ S such that 0 < ‖u‖ < δ. Now

‖Dp(f)2 −Dp(f)1‖ = sup
0<‖u‖<δ

‖Dp(f)2(u)−Dp(f)1(u)‖
‖u‖

< sup
0<‖u‖<δ

‖u‖ε
‖u‖

= ε.

(2.13.5)

Since this holds for all ε ∈ R+, Dp(f)2 = Dp(f)1.

Theorem 2.13.4 (Restriction of differentiable is differentiable). Let U and V be
norm spaces over R, p ∈ S ′ ⊂ S ⊂ U , and f : S → V be differentiable at p. Then f |S ′ is
differentiable at p.

Proof. Since f is differentiable at p, for every ε ∈ R+ there exists δ ∈ R+ such that

‖Dp(f)2(u)−Dp(f)1(u)‖ < ‖u‖ε, (2.13.6)

for all u ∈ S such that 0 < ‖u‖ < δ. This claim still holds if we require in addition that
u ∈ S ′.

Remark 2.13.5. Note that in Theorem 2.13.4 the restriction is to an arbitrary subset S ′.
In particular, S ′ need not be open in S. If S ′ = {p}, then f |S ′ is vacuously differentiable
at p.

Example 2.13.6. The converse of Theorem 2.13.4 does not hold in general for arbitrary
subsets S ′ ⊂ S. For example, let f : R→ R : f(x) = |x|, and S ′ = [0, 1] ⊂ R. Then f |S ′
is differentiable at 0, but f is not differentiable at 0.
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Theorem 2.13.7 (Differentiability is local). Let U and V be norm spaces over R,
p ∈ S ′ ⊂ S ⊂ U , S ′ ∈ TS(p), and f : S → V . Then f is differentiable at p if and only if
f |S ′ is differentiable at p.

Proof. Assume f is differentiable at p. Then Theorem 2.13.4 shows that f |S ′ is differ-
entiable at p. Assume f |S is differentiable at p. Since S ′ is open in S, the topology
of S ′ consists exactly of those open sets of S which are contained in S ′. Therefore the
differentiability of f |S ′ at p implies the differentiability of f at p.

Theorem 2.13.8 (Total derivative of a constant is zero). Let U and V be norm
spaces over R, p ∈ U , S ∈ TU(p), and f : S → V be a constant function. Then f is
differentiable at p, and Dp(f) = 0.

Proof. Let u ∈ S \ {0}. Then

‖∆p(f)(u)− 0‖
‖u‖

= 0. (2.13.7)

Therefore Dp(f) = 0, since the total derivative is unique by Theorem 2.13.3.

Theorem 2.13.9 (Scaling rule for total derivative). Let U and V be norm spaces
over R, f : U → V be differentiable at p ∈ U , and α ∈ R. Then f is differentiable at p if
and only if αf is differentiable at p, and

Dp(αf) = αDp(f). (2.13.8)

Proof. Assume f is differentiable at p, and u ∈ U \ {0}. Then

‖∆p(αf)− αDp(f)‖
‖u‖

=
‖α∆p(f)− αDp(f)‖

‖u‖

= |α|‖∆p(f)−Dp(f)‖
‖u‖

.

(2.13.9)

Taking the limit u→ 0 on both sides gives

lim
u→0

‖∆p(αf)− αDp(f)‖
‖u‖

≤ 0, (2.13.10)

since f is differentiable at p, and by Theorem 2.11.4. The result follows since total
derivative is unique by Theorem 2.13.3. Assume αf is differentiable at p. The result is
trivial for α = 0. Assume α 6= 0. Then by the previous result

1

α
Dp(αf) = Dp

(
1

α
αf

)
= Dp(f).

(2.13.11)

Theorem 2.13.10 (Sum rule for total derivative). Let U and V be norm spaces over
R, and f, g : U → V be differentiable at p ∈ U . Then f + g is differentiable at p, and

Dp(f + g) = Dp(f) +Dp(g). (2.13.12)
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Proof. Let u ∈ U \ {0}. Then by the sub-additivity of the norm

‖∆p(f + βg)(u)− (Dp(f)(u) +Dp(g)(u))‖
‖u‖

=
‖[∆p(f)(u)−Dp(f)(u)] + [∆p(g)(u)−Dp(g)(u)]‖

‖u‖

≤‖∆p(f)(u)−Dp(f)(u)‖
‖u‖

+
‖∆p(g)(u)−Dp(g)(u)‖

‖u‖
.

(2.13.13)

Now

1. limu→0
‖∆p(f)(u)−Dp(f)(u)‖

‖u‖ = 0, since f is differentiable at p,

2. limu→0
‖∆p(g)(u)−Dp(g)(u)‖

‖u‖ = 0, since g is differentiable at p.

Therefore
lim
u→0

‖∆p(f + g)(u)− (Dp(f)(u) +Dp(g)(u))‖
‖u‖

≤ 0, (2.13.14)

by Theorem 2.11.3 and Theorem 2.11.4. The Dp(f) + Dp(g) is continuous since V is a
topological vector space. The result follows, since total derivative is unique by Theorem
2.13.3.

Example 2.13.11. Let U and V be norm spaces over R, and f : U → V be non-
differentiable at p ∈ U . Then Dp(f − f) = 0, but Dp(f)−Dp(f) does not exist.

Theorem 2.13.12 (Total derivative of a continuous linear function is itself).
Let U and V be norm spaces over R, f : U → V be continuous linear, and p ∈ U . Then
f is differentiable, and Dp(f) = f .

Proof. Let u ∈ U \ {0}. Then

‖∆p(f)(u)− f(u)‖ = ‖f(p+ u)− f(p)− f(u)‖
= ‖f(p+ u)− f(p+ u)‖
= 0.

(2.13.15)

Theorem 2.13.13 (Product rule for total derivative). Let U be a norm space, and
f, g : U → R be differentiable at p ∈ U . Then fg is differentiable at p, and

Dp(fg) = f(p)Dp(g) +Dp(f)g(p). (2.13.16)

Proof. First rewrite

∆p(fg)(u)− [Dp(f)(u)g(p) + f(p)Dp(g)(u)]

=f(p+ u)[∆p(g)(u)−Dp(g)(u)]

+[g(p) +Dp(g)(u)][∆p(f)(u)−Dp(f)(u)]

+Dp(f)(u)Dp(g)(u).

(2.13.17)
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By the sub-additivity of the norm

‖∆p(fg)(u)− [Dp(f)(u)g(p) + f(p)Dp(g)(u)]‖
‖u‖

≤|f(p+ u)|‖∆p(g)(u)−Dp(g)(u)‖
‖u‖

+|g(p) +Dp(g)(u)|‖∆p(f)(u)−Dp(f)(u)‖
‖u‖

+|Dp(f)(u)|
∥∥∥∥Dp(g)

(
u

‖u‖

)∥∥∥∥.
(2.13.18)

Since f and g are differentiable, they are also continuous by Theorem 2.13.16. Now

• limu→0 |f(p+ u)| = 0, since norm and f are continuous,

• limu→0 |g(p) + Dp(g)(u)| = |g(p)| < ∞, since norm is continuous, and Dp(g) is
continuous linear,

• limu→0 |Dp(f)(u)| = 0, since norm is continuous, and Dp(f) is continuous linear,

•
∥∥∥Dp(g)

(
u
‖u‖

)∥∥∥ ≤ ‖Dp(g)‖ <∞, since Dp(g) is bounded,

• limu→0
‖∆p(f)(u)−Dp(f)(u)‖

‖u‖ = 0, since f is differentiable,

• limu→0
‖∆p(g)(u)−Dp(g)(u)‖

‖u‖ = 0, since g is differentiable.

Therefore
‖∆p(fg)(u)− [Dp(f)(u)g(p) + f(p)Dp(g)(u)]‖

‖u‖
≤ 0 (2.13.19)

by Theorem 2.11.3 and Theorem 2.11.4.

Theorem 2.13.14 (Inverse rule for total derivative). Let U be a norm space, and
f : U → R be differentiable at p ∈ U , such that f(p) 6= 0. Then 1/f is differentiable at
p, and

Dp(1/f) = −Dp(f)

f(p)2
. (2.13.20)

Proof. Let g : U → R such that g = 1/f . Then

0 = Dp(1)

= Dp(fg)

= Dp(f)g(p) + f(p)Dp(g)

(2.13.21)

by Theorem 2.13.13 and Theorem 2.13.8. Therefore

Dp(g) = −Dp(f)g(p)

f(p)

= −Dp(f)

f(p)2
.

(2.13.22)
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Theorem 2.13.15 (Quotient rule for total derivative). Let U be a norm space, and
f, g : U → R be differentiable at p ∈ U , such that g(p) 6= 0. Then f/g is differentiable at
p, and

Dp(f/g) =
Dp(f)g(p)− f(p)Dp(g)

g(p)2
. (2.13.23)

Proof. Now

Dp(f/g) = Dp(f(1/g))

=
Dp(f)

g(p)
+ f(p)Dp(1/g)

=
Dp(f)

g(p)
− f(p)

Dp(g)

g(p)2

=
Dp(f)g(p)− f(p)Dp(g)

g(p)2
,

(2.13.24)

where we used Theorem 2.13.14, and Theorem 2.13.13.

Theorem 2.13.16 (Differentiable is continuous). Let U and V be norm spaces, and
f : U → V be differentiable at p ∈ U . Then f is continuous at p.

Proof. Let u ∈ U \ {0}. Then by the sub-additivity of the norm

‖∆p(f)(u)‖ = ‖∆p(f)(u)−Dp(f)(u) +Dp(f)(u)‖
≤ ‖∆p(f)(u)−Dp(f)(u)‖+ ‖Dp(f)(u)‖

=
‖∆p(f)(u)−Dp(f)(u)‖

‖u‖
‖u‖+ ‖Dp(f)(u)‖.

(2.13.25)

We have that

1. limu→0
‖Dp(f)(u)−∆p(f)(u)‖

‖u‖ = 0, since f is differentiable at p,

2. limu→0‖u‖ = ‖limu→0 u‖ = 0, since the norm is continuous, and

3. limu→0‖Dp(f)(u)‖ = ‖Dp(f)(limu→0 u)‖ = 0, since the norm and Dp(f) are contin-
uous, and Dp(f) is linear.

Taking limits on both sides we have that

lim
u→0
‖∆p(f)(u)‖ ≤ 0 (2.13.26)

by Theorem 2.13.10, Theorem 2.13.9, and Theorem 2.13.13. Therefore f is continuous at
p.

Theorem 2.13.17 (Chain rule for total derivative). Let U , V , and W be norm
spaces, and p ∈ U . Let g : U → V be differentiable at p, and f : V → W be differentiable
at g(p). Then f ◦ g is differentiable at p, and

Dp(f ◦ g) = Dg(p)(f) ◦ Dp(g). (2.13.27)
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Proof. Let u ∈ U \ {0}, q = f(p), v = ∆p(f)(u), and w = Dp(f)(u). Then∥∥∆p(g ◦ f)(u)−Df(p)(g)(Dp(f)(u))
∥∥

=‖∆q(g)(v)−Dq(g)(w)‖
=‖∆q(g)(v)−Dq(g)(v) +Dq(g)(v)−Dq(g)(w)‖
≤‖∆q(g)(v)−Dq(g)(v)‖+ ‖Dq(g)(v − w)‖
≤‖∆q(g)(v)−Dq(g)(v)‖+ ‖Dq(g)‖‖v − w‖
=‖∆q(g)(v)−Dq(g)(v)‖+ ‖Dq(g)‖‖∆p(f)(u)−Dp(f)(u)‖

(2.13.28)

Since f is differentiable at p, it is also continuous at p by Theorem 2.13.16. Therefore
limu→0 ∆p(f)(u) = 0. Since f is differentiable, and g is differentiable, for every ε > 0 we
may choose δ > 0 such that

‖∆p(f)(u)−Dp(f)(u)‖ < ε‖u‖,
‖∆q(g)(v)−Dq(g)(v)‖ < ε‖v‖,

(2.13.29)

for all ‖u‖ < δ. Therefore∥∥∆p(g ◦ f)(u)−Df(p)(g)(Dp(f)(u))
∥∥

≤ε‖v‖+ ε‖Dq(g)‖‖u‖
=ε‖v −Dp(f)(u) +Dp(f)(u)‖+ ε‖Dq(g)‖‖u‖
≤ε‖∆p(f)(u)−Dp(f)(u)‖+ ε‖Dp(f)(u)‖+ ε‖Dq(g)‖‖u‖
≤ε2‖u‖+ ε‖Dp(f)‖‖u‖+ ε‖Dq(g)‖‖u‖
≤ε‖u‖(ε+ ‖Dp(f)‖+ ‖Dq(g)‖),

(2.13.30)

for all ‖u‖ < δ. Since this holds for any ε > 0, the result holds.

3 Symmetry groups

3.1 General linear group

Let V be a vector space. The general linear group GL(V ) of V is the set of invertible
linear functions in V , together with function composition as the group operation. A
linear group is any sub-group ofGL(V ). A linear group S is called special, if det(f) > 0
for all f ∈ S.

Theorem 3.1.1 (Composition of linear functions is linear). Let U , V , and W be
vector spaces over F , and f : U → V and g : V → W be linear. Then f ◦ g is linear.

Proof. Let α, β ∈ F , and x, y ∈ U . Then

(f ◦ g)(αx+ βy) = f(g(αx+ βy))

= f(αg(x) + βg(y))

= αf(g(x)) + βf(g(y))

= α(f ◦ g)(x) + β(f ◦ g)(y).

(3.1.1)
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Theorem 3.1.2 (Inverse of a linear function is linear). Let V and W be vector
spaces over F , and f : V → W be linear and invertible. Then f−1 is linear.

Proof. Let α, β ∈ F , and x, y ∈ W . Then

f−1(αx+ βy) = f−1
[
αf(f−1(x)) + βf(f−1(y))

]
= f−1

[
f(αf−1(x) + βf−1(y))

]
= αf−1(x) + βf−1(y).

(3.1.2)

Theorem 3.1.3 (General linear group is a group). The general linear group GL(V )
is a group under composition.

Proof. Composition is associative, and by Theorem 3.1.1 GL(V ) is closed under compo-
sition. The identity function is linear and is the identity element under composition. By
definition, each element of GL(V ) has an inverse, and by Theorem 3.1.2 GL(V ) is closed
under inverses.

3.2 Scaling linear group

Let V be a vector space over F . A function f : V → V is called a scaling, if there exists
λ ∈ F such that

f(x) = λx. (3.2.1)

The scaling linear group is the set of invertible scalings in V , together with function
composition as the group operation.

Theorem 3.2.1 (Scaling linear group is a commutative linear group). The scaling
linear group S(V ) is a commutative sub-group of the general linear group GL(V ).

Proof. Let f, g ∈ S(V ), such that

f(x) = αx,

g(x) = βx,
(3.2.2)

for some α, β ∈ F \ {0}. Then
(f ◦ g)(x) = αβx. (3.2.3)

Since αβ ∈ F \ {0}, f ◦ g ∈ S(V ), and S(V ) is closed under composition. Since the
composition order does not matter, S(V ) is commutative. If β = α−1, then (f ◦g)(x) = x,
and thus f−1 = g. Since composition is associative, f−1 is unique by Theorem 2.7.3.
Therefore every element of S(V ) has an inverse. Since f−1 ∈ S(V ), S(V ) is closed under
inverses. The identity function is the identity element in S(V ), and is unique by Theorem
2.7.2. Therefore S(V ) is a commutative group under composition. Since every f ∈ S(V )
is clearly linear, S(V ) is a sub-group of the general linear group GL(V ).

51



3.3 Orthogonal linear group

Let V and W be symmetric bilinear spaces over F . The orthogonal O(V ) in V is the
set of invertible orthogonal linear functions in V . A plane reflection in V , defined only
when char(F ) 6= 2, is a function πb ∈ O(V ) defined by

πb(x) = x− 2
b · x
b · b

b, (3.3.1)

where b ∈ V , b · b 6= 0, is the normal of the plane.

Theorem 3.3.1 (Orthogonal is linear when non-degenerate). Let V and W be
bilinear spaces, and f : V → W be an orthogonal function, such that the bilinear form in
W is left-non-degenerate, or right-non-degenerate, on f(V ). Then f is linear.

Proof. We will assume the bilinear form in W is left-non-degenerate on f(V ); the right-
non-degenerate case is similar. Let α, β ∈ R, and x, y, z ∈ V . Since f is orthogonal,

f(αx+ βy) · f(z) = (αx+ βy) · z
= α(x · z) + β(y · z)

= α(f(x) · f(z)) + β(f(y) · f(z))

= (αf(x) + βf(y)) · f(z).

(3.3.2)

We write this as
(f(αx+ βy)− (αf(x) + βf(y))) · f(z) = 0. (3.3.3)

Since · is left-non-degenerate on f(V ),

f(αx+ βy)− (αf(x) + βf(y)) = 0. (3.3.4)

Therefore f is linear.

Theorem 3.3.2 (Composition of orthogonal functions is orthogonal). Let U , V ,
and W be bilinear spaces, and let f : U → V and g : V → W be orthogonal. Then f ◦ g
is orthogonal.

Proof. Let x, y ∈ U . Then

(f ◦ g)(x) · (f ◦ g)(y) = f(g(x)) · f(g(y))

= g(x) · g(y)

= x · y.
(3.3.5)

Theorem 3.3.3 (Inverse of an orthogonal function is orthogonal). Let V , and
W be bilinear spaces, and let f : V → W be orthogonal and invertible. Then f−1 is
orthogonal.

Proof. Let x, y ∈ W . Then

f−1(x) · f−1(y) = f(f−1(x)) · f(f−1(y))

= x · y.
(3.3.6)
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Theorem 3.3.4 (Orthogonal group is a linear group). The orthogonal group O(V )
is a sub-group of the general linear group GL(V ).

Proof. Composition is associative, and by Theorem 3.3.2 O(V ) is closed under compo-
sition. Since the identity function is orthogonal, O(V ) has an identity element, which
is unique by Theorem 2.7.3. By definition, every element of O(V ) has an inverse. By
Theorem 3.3.3 O(V ) is closed under inverse. Since in addition O(V ) ⊂ GL(V ), O(V ) is
a sub-group of GL(V ).

Theorem 3.3.5 (Properties of plane reflection). Let V be a bilinear space over F ,
with char(F ) 6= 2. Then the plane reflection πb is linear, orthogonal, invertible, and
involutive, for all b ∈ V , b · b 6= 0.

Proof. Let b ∈ V such that b · b 6= 0, and let γ = 1
b·b . Then

πb(x) = x− 2γ(b · x)b. (3.3.7)

Let x, y ∈ V , and α, β ∈ F . Then

πb(αx+ βy) = (αx+ βy)− 2γ(b · (αx+ βy))b

= α[x− 2γ(b · x)b] + β[y − 2γ(b · y)b]

= απb(x) + βπb(y).

(3.3.8)

Therefore πb is linear. Also

πb(x) · πb(y) = (x− 2γ(b · x)b) · (y − 2γ(b · y)b)

= x · y − 4γ(b · x)(b · y) + 4γ2(b · x)(b · y)(b · b)
= x · y − 4γ(b · x)(b · y) + 4γ(b · x)(b · y)

= x · y.

(3.3.9)

Therefore πb is orthogonal. Now

(πb ◦ πb)(x) = πb(x)− 2γ(b · πb(x))b

= (x− 2γ(b · x)b)− 2γ(b · (x− 2γ(b · x)b))b

= x− 4γ(b · x)b+ 4γ2(b · x)(b · b)b
= x− 4γ(b · x)b+ 4γ(b · x)b

= x.

(3.3.10)

Therefore πb is invertible and involutive.

Theorem 3.3.6 (Orthogonal function by reflections). Let V be an n-dimensional
non-degenerate symmetric bilinear space over F , with n ≥ 1 and char(F ) 6= 2, and
f ∈ O(V ). Then there exists a set of functions π1, . . . , πn : V → V , each either a plane
reflection or an identity function, such that

π1 ◦ · · · ◦ πn = f. (3.3.11)
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Proof. Consider the subspace

B = {f(a)− a : a ∈ V }. (3.3.12)

Suppose every vector in B is null. TODO.
Otherwise, there exists a ∈ V such that b · b 6= 0, where b = f(a)− a. Then

(b · b)πb(a) = (b · b)a− 2(b · a)b

= (b · b)f(a)− (b · b)b− 2(b · a)b

= (b · b)f(a)− (b · (f(a) + a))b

= (b · b)f(a),

(3.3.13)

where the last step follows from the orthogonality of f by

b · (f(a) + a) = (f(a)− a) · (f(a) + a)

= f(a) · f(a)− a · a
= 0.

(3.3.14)

Since πb maps a 7→ f(a), we may choose π1 = πb, and the claim holds for n = 1. Assume
the claim holds for n− 1, where n > 1. Let S = span(f(a)) ⊂ V , and f̂ ∈ O

(
SV

)
such

that f̂ is the restriction of π1 ◦ f to SV . Since SV is (n− 1)-dimensional, there exists
functions π̂2, . . . π̂n : SV → SV of the required type such that

f̂ = π̂2 ◦ · · · ◦ π̂n. (3.3.15)

We extend these functions to linear functions π2, . . . , πn : V → V such that

πi(x) =

{
x, if x ∈ S,
π̂i(x), if x ∈ SV .

(3.3.16)

for all 2 ≤ i ≤ n. This extension by identity retains all the required properties. Then

π2 ◦ · · · ◦ πn = π1 ◦ f. (3.3.17)

Since π1 is involutive,
π1 ◦ · · · ◦ πn = f. (3.3.18)

Remark 3.3.7. Theorem 3.3.6 is known as the Cartan-Dieudonné theorem. It states
that the linear plane reflections generate the orthogonal linear group. The usefulness of
this theorem lies in that if we can represent plane reflections and their compositions in
some algebra, then we can also represent any orthogonal function in that algebra. This is
particularly true for geometric algebra. It is this theorem which highlights the importance
of having a bilinear form which is both symmetric and non-degenerate.

Remark 3.3.8 (Orientations of subspaces). Consider the decomposition V = V −⊥V +.
For a transform f ∈ O(V ) it must hold that f(V −) = V −, and f(V +) = V +. There-
fore we may decompose f = f− ⊕ f+, where f− ∈ O(V −), and f+ ∈ O(V +). Then
det(f) = det(f−)det(f+), and there are four cases, corresponding to the four connected
components of O(V ). These cases are shown in Table 7.
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Table 7: Types of transformations in O(V ) by orientation change. Here f = f+ ⊕ f− ∈
O(V ), where f+ ∈ O(V +), and f− ∈ O(V −).

det(f+) det(f−) det(f) Component

−1 −1 +1 SO−(V )

−1 +1 −1 O−(V )

+1 −1 −1 O−(V )

+1 +1 +1 SO+(V )

3.4 Conformal linear group

Let V be a symmetric bilinear space over F . The conformal linear group CO(V ) is
the direct sum

CO(V ) = S(V )⊕O(V ). (3.4.1)

Remark 3.4.1. Conformal means angle-preserving.

Remark 3.4.2. CO(V ) is also known as the conformal orthogonal group. We find this
terminology confusing, since a conformal linear transformation need not be orthogonal.

Theorem 3.4.3 (Characterization of conformal linear functions). Let f ∈ CO(V ).
Then there exists λf ∈ F , such that

f(x) · f(y) = λf (x · y), (3.4.2)

for all x, y ∈ V .

Proof. Scalings commute with orthogonal functions. Therefore one can rearrange any
composition of functions such that scalings are done first, followed by orthogonal func-
tions. Since the composition of scalings is a scaling, and the composition of orthogonal
functions is orthogonal, the result follows.

3.5 Affine groups

Let V and W be a vector spaces over F . A function f : V → W is called affine, if

f((1− α)x+ αy) = (1− α)f(x) + αf(y), (3.5.1)

for all α ∈ R, and x, y ∈ V . A function f : V → V is called a translation, if there exists
t ∈ V such that

f(x) = x+ t. (3.5.2)

The translation affine group T(V ) is the set of translations in V , together with func-
tion composition as the group operation. An affine group is a direct sum of the trans-
lation affine group and any subgroup of the general linear group.

Example 3.5.1. Translation is affine. Except for the identity translation, it is not linear.
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Example 3.5.2. Examples of affine groups include general affine group, translation affine
group, scaling affine group, orthogonal affine group, and conformal affine group.

Theorem 3.5.3 (An affine group is a commutative group). The translation affine
group T(V ) is a commutative group under composition.

Proof. Obvious.

Theorem 3.5.4 (Affine generalizes linear). Any linear group is a sub-group of its
corresponding affine group.

Proof. Obvious.

4 Algebraic structure

4.1 Clifford algebra

Let V be a symmetric bilinear space over R, and W ⊂ T (V ) a subspace of T (V ) defined
by

W = span
({
Akv

2Bl − (v · v)AkBl : k, l ∈ N, v ∈ V,Ak ∈ V ⊗k, Bl ∈ V ⊗l
})
. (4.1.1)

Then the Clifford algebra Cl(V ) on V is the quotient algebra

Cl(V ) = T (V )/W. (4.1.2)

The symmetric bilinear form in V is called the dot product. If we want to be explicit
about the signature (p, q, r) of the dot product, then we denote Cl(V ) = Cl(V )p,q,r, or
Cl(V ) = Cl(V )p,q, if r = 0. The product in Cl(V ) is called the geometric product. The
elements of Cl(V ) are called multi-vectors. If A ∈ Cl(V ), and A = a1 · · · ak for some
{a1, . . . , ak} ⊂ V , then A is called a k-versor. An element Ak ∈ Cl(V ) is called a k-blade
if it is a k-versor of orthogonal vectors, and a k-vector, if it is a linear combination of
k-blades. The center of Cl(V ) is the sub-algebra

Center(Cl(V )) = {A ∈ Cl(V ) : AB = BA, for all B ∈ Cl(V )}. (4.1.3)

Remark 4.1.1. The Cl in Cl(V ) stands for William Kingdon Clifford, the inventor of
Clifford algebra.

Remark 4.1.2 (Notation for Clifford algebra). Taking the notation for the ten-
sor algebra as a starting point, and writing the equivalence classes of Cl(V ) by their
representatives, we may write equations such as

(2uw − 4v)w = 2uw2 − 4vw, (4.1.4)

for u, v, w ∈ V . We interpret the quotient T (V )/W as stating a simplification rule in this
notation, so that it makes sense to further write

(2uw − 4v)w = 2(w · w)u− 4vw. (4.1.5)
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Remark 4.1.3 (Naming for versors). Some texts, such as [3], require a versor to be
invertible. However, many theorems apply to general products of vectors rather than just
to invertible products of vectors. We follow [4] in our naming.

Remark 4.1.4 (R is a sub-algebra of Cl(V )). The sub-algebra {αe0 : α ∈ R} ⊂ Cl(V )
is field-isomorphic to R; the isomorphism is φ : R→ Cl(V ) : φ(α) = αe0. Therefore these
two sets are often interchanged in notation, although a rigorous, but perhaps distracting,
way would be to explicitly use e0 everywhere. Let us temporarily denote the geometric
product by ~. Since for α, β ∈ R and A ∈ Cl(V ),

(αe0 + βe0)~ A = α(e0 ~ A) + β(e0 ~ A) (4.1.6)
= (α + β)A (4.1.7)
= α(A~ e0) + β(A~ e0) (4.1.8)
= A~ (αe0 + βe0), (4.1.9)

there is no danger in this abuse of notation.

Theorem 4.1.5 (Dot product from geometric product). Let a, b ∈ V . Then 1
2
(ab+

ba) = a · b.

Proof.

ab+ ba = (a+ b)2 − a2 − b2 (4.1.10)
= (a+ b) · (a+ b)− a · a− b · b (4.1.11)
= 2a · b. (4.1.12)

Theorem 4.1.6 (Orthogonal vectors anti-commute). If a, b ∈ V , then

a · b = 0⇔ ab = −ba, (4.1.13)

i.e. vectors are orthogonal if and only if they anti-commute.

Proof. This is an immediate consequence of Theorem 4.1.5.

Remark 4.1.7 (Coordinate-free proofs). Following [4], we do not pick a priviledged
basis for V to define a Clifford algebra Cl(V ). This approach reveals more structure
in proofs, since the number of assumptions is reduced. This is to be contrasted with
some texts picking a priviledged orthogonal basis {e1, . . . , en} ⊂ V , and then relying on
coordinate expansions and the fact that eiej = −ejei, for i 6= j by Theorem 4.1.6. Picking
a priviledged orthogonal basis is also problematic when non-orthogonal bases of V are
used, as is done with the conformal geometric algebra model. The non-orthogonal basis
vectors have then to be described in the terms of the orthogonal basis vectors. However,
it is then not immediately clear which results proved for the orthogonal basis vectors
hold, or do not hold, for the non-orthogonal basis vectors.

Remark 4.1.8. If V = {0}, a zero-dimensional vector-space, then Cl(V ) is field-isomorphic
to R.
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4.2 Morphisms

The reversion is an algebra anti-automorphism ˜ : Cl(V ) → Cl(V ) such that ṽ = v
for all v ∈ V . The grade involution is an algebra automorphism ̂ : Cl(V ) → Cl(V )
such that v̂ = −v for all v ∈ V . The conjugation is an algebra anti-automorphism

: Cl(V )→ Cl(V ) such that v = −v for all v ∈ V .

Remark 4.2.1. The missing automorphism to fill the pattern is Cl(V ) → Cl(V ) such
that v 7→ v for all v ∈ V . But this is just the identity function on Cl(V ).

Remark 4.2.2. The reversion, grade involution, and conjugation are all involutions, i.e.
they are their own inverses.

Remark 4.2.3. If {a1, . . . , ak} ⊂ V , then ˜a1 · · · ak = ak · · · a1, explaining the name
reversion.

Theorem 4.2.4 (Vector-preserving homomorphisms preserve dot product). Let
f : Cl(V )→ Cl(W ) be an algebra homomorphism (anti-homomorphism) such that f(V ) ⊂
W . Then f |V is orthogonal.

Proof. We will prove the result assuming f is an homomorphism; the proof for the anti-
homomorphism is almost identical. Let a, b ∈ V . Then by Theorem 4.1.5, and f(V ) ⊂ W ,

2(f(a) · f(b)) = f(a)f(b) + f(b)f(a)

= f(ab) + f(ba)

= f(ab+ ba)

= f(2(a · b))
= 2(a · b).

(4.2.1)

Therefore f |V is orthogonal.

Theorem 4.2.5 (Reversion formula). Let Ak ∈ Cl(V ) be a k-vector. Then Ãk =

(−1)
k(k−1)

2 Ak.

Proof. By linearity, we only need to prove the result for k-blades. Let Ak = a1 · · · ak,
where {a1, . . . , ak} ⊂ V is an orthogonal set of vectors. By Theorem 4.1.6, aiaj = −ajai,
for i 6= j. Therefore

Ãk = ˜a1 · · · ak
= ak · · · a1

= (−1)k−1a1ak · · · a2

= (−1)k−1 · · · (−1)1a1 · · · ak
= (−1)

k(k−1)
2 Ak.

(4.2.2)

Theorem 4.2.6 (Grade involution formula). Let A = a1 · · · ak ∈ Cl(V ) be a k-versor,
where {a1, . . . , ak} ⊂ V . Then

Â = (−1)kA. (4.2.3)
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Proof.

Â = ̂a1 · · · ak
= â1 · · · âk
= (−a1) · · · (−ak)
= (−1)ka1 · · · ak
= (−1)kA.

(4.2.4)

Remark 4.2.7. Theorem 4.2.6 extends by linearity to linear combinations of k-versors,
and in particular to k-vectors.

Theorem 4.2.8 (Conjugation formula). Let Ak ∈ Cl(V ) be a k-vector. Then Ak =

(̃Âk) = (̂Ãk) = (−1)
k(k+1)

2 Ak.

Proof. By linearity, we only need to prove the result for the k-blades. Now

Ak = a1 · · · ak
= ak · · · a1

= (−ak) · · · (−a1)

= (−1)kak · · · a1

= (−1)kÃk

= (̂Ãk)

= (̃Âk)

= (−1)k(−1)
k(k−1)

2 Ak

= (−1)
k(k+1)

2 Ak.

(4.2.5)

4.3 Inverse

Theorem 4.3.1 (Product of a k-versor and its reverse or conjugate is real). Let
A ∈ Cl(V ) be a k-versor. Then

AÃ = ÃA ∈ R,
AA = AA ∈ R.

(4.3.1)
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Proof. Let A = a1 · · · ak ∈ Cl(V ), where {a1, . . . , ak} ⊂ V . Then

AÃ = (a1 · · · ak)(ak · · · a1)

=
n∏
i=1

a2
i

=
n∏
i=1

ai · ai ∈ R

= (ak · · · a1)(a1 · · · ak)
= ÃA.

(4.3.2)

Similarly, but using the conjugation, one shows that AA = AA ∈ R.

Theorem 4.3.2 (Versor inverse). Let A ∈ Cl(V ) be a k-versor such that AÃ 6= 0.
Then A has a unique inverse with respect to the geometric product given by

A−1 =
Ã

AÃ
=

A

AA
. (4.3.3)

Proof. By Theorem 4.3.1, AÃ = ÃA ∈ R. Now

A
Ã

AÃ
=
AÃ

AÃ
= 1 =

ÃA

AÃ
=

Ã

AÃ
A. (4.3.4)

The inverse is unique by Theorem 2.7.3. Similarly, but using the conjugation, one shows
the latter equation.

Theorem 4.3.3 (Blade squared is real). Let Ak ∈ Cl(V ) be a k-blade. Then

A2
k ∈ R. (4.3.5)

Proof. By Theorem 4.3.1 and Theorem 4.2.5,

A2
k = (−1)

k(k−1)
2 AkÃk ∈ R. (4.3.6)

Example 4.3.4. While for a k-blade Ak ∈ Cl(V ) it holds that A2
k ∈ R, this does not

hold for k-versors in general. As an example, consider a, b ∈ Cl(R2,0), where a = e1 and
b = e1 + e2. Then ab = 1 + e1e2, and (ab)2 = 2e1e2 /∈ R. This shows that the initially
attractive definition Ak/A2

k for the inverse of a k-blade does not generalize to k-versors.

4.4 Grading

The grade of a k-vector is k. Let X ∈ Cl(V ) such that

X =
n∑
k=0

Xk,
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where Xk ∈ Cl(V ) is a k-vector. Then the grade-selection operator 〈·〉k : Cl(V ) →
Cl(V ) is defined by 〈X〉k = Xk. Let

〈X〉+ =
∞∑
k=0

〈X〉2k

〈X〉− =
∞∑
k=0

〈X〉2k+1.

(4.4.1)

The even part of Cl(V ) is the set 〈Cl(V )〉+, and the odd part of Cl(V ) is the set
〈Cl(V )〉−. The multi-vectors in these sets are called even and odd, respectively.

Remark 4.4.1. Although all elements of Cl(V ) are vectors in the vector-space sense, in
Clifford algebra the vector term is reserved for the elements of V , i.e. 1-vectors.

Remark 4.4.2. The grade selection operator is linear and idempotent. It is a projection
to the k-vector subspace.

Theorem 4.4.3 (Grade selection commutes with vector-preserving homomor-
phisms). Let f : Cl(V ) → Cl(W ) be an algebra homomorphism (anti-homomorphism).
Then

f(〈A〉k) = 〈f(A)〉k (4.4.2)

if and only if f(V ) ⊂ W .

Proof. We will prove the result assuming f is an algebra homomorphism; the proof for
the algebra anti-homomorphism is almost identical. Assume f(V ) ⊂ W . By linearity we
only need prove the result for l-blades. Let Al = a1 · · · al ∈ Cl(V ) be an l-blade, where
{a1, . . . , al} ⊂ V is orthogonal. Then

f(Al) = f(a1 · · · al)
= f(a1) · · · f(al).

(4.4.3)

Then f(Al) is also an l-blade, since each f(ai) ∈ W , and by Theorem 4.2.4 f|V is orthog-
onal. Assume l 6= k. Then f(〈Al〉k) = 0 = 〈f(Al)〉k, and the result holds. Assume l = k.
Then

f(〈Ak〉k) = f(Ak)

= 〈f(Ak)〉k,
(4.4.4)

and the result holds. Assume f(〈A〉k) = 〈f(A)〉k holds. Then in particular

f(a) = 〈f(a)〉1, (4.4.5)

for all a ∈ V . Therefore f(V ) ⊂ W .

Remark 4.4.4. In particular, Theorem 4.4.3 applies to reversion, grade involution, and
conjugation.

Theorem 4.4.5 (Clifford algebra is Z2-graded). Clifford algebra Cl(V ) is Z2-graded.
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Proof. Let A,B ∈ Cl(V ). By Theorem 4.4.3,

〈
〈A〉+〈B〉+

〉
k

=
̂̂〈

〈A〉+〈B〉+
〉
k

= (−1)k
〈

̂〈A〉+〈B〉+
〉
k

= (−1)k
〈
〈̂A〉+〈̂B〉+

〉
k

= (−1)k
〈
〈A〉+〈B〉+

〉
k
.

(4.4.6)

It follows that if k is odd, then
〈
〈A〉+〈B〉+

〉
k

= 0. Repeating this reasoning for the other
combinations odd-even, even-odd, and odd-odd, we get that

〈A〉+〈B〉+ ∈ 〈Cl(V )〉+
〈A〉−〈B〉+ ∈ 〈Cl(V )〉−
〈A〉+〈B〉− ∈ 〈Cl(V )〉−
〈A〉−〈B〉− ∈ 〈Cl(V )〉+.

(4.4.7)

Therefore Cl(V ) = 〈Cl(V )〉+ u 〈Cl(V )〉− is Z2-graded (think of + as zero, and − as
one).

Remark 4.4.6. A Z2-graded algebra is also called a super-algebra.

Remark 4.4.7. The proof of Theorem 4.4.5 also shows that 〈Cl(V )〉+ is a sub-algebra
of Cl(V ), called the even sub-algebra of Cl(V ), and that 〈Cl(V )〉− is not a sub-algebra
of Cl(V ), since it is not closed under multiplication.

Example 4.4.8 (Clifford algebra is not N-graded). Although we have the decompo-
sition Cl(V ) =

⊕n
k=0〈Cl(V )〉k, and we call the k in k-vector a grade, the Clifford algebra

Cl(V ) is not N-graded. For example, if a ∈ V , then a2 has grade 0 although a has grade
1. Instead, as we will see later, it is the exterior algebra of Cl(V ) which is N-graded.

Theorem 4.4.9 (The parity of a k-versor equals the parity of k). Let A =
a1 · · · ak ∈ Cl(V ) be a k-versor, where {a1, · · · , ak} ⊂ V . Then A is even if and only
if k is even, and A is odd if and only if k is odd.

Proof. If k = 0, then the result holds. Assume k > 0, and k is even. Since each ai is odd,
by Theorem 4.4.5 aiai+1 is even, for i < n. Then

a1 · · · ak =

k/2∏
i=1

a2i−1a2i ∈ 〈Cl(V )〉+. (4.4.8)

Assume k > 0, and k is odd. Then a1 · · · ak−1 is even by the previous, and a1 · · · ak−1ak
is odd by Theorem 4.4.5.

Theorem 4.4.10 (Grades in a geometric product of a vector and a blade). Let
a ∈ V , and Bk ∈ Cl(V ) be a k-vector. Then

aBk = 〈aBk〉k−1 + 〈aBk〉k+1

Bka = 〈Bka〉k−1 + 〈Bka〉k+1

(4.4.9)
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Proof. By linearity we only need to prove the result for k-blades. Let Bk = b1 · · · bk,
where {b1, . . . , bk} ⊂ V is an orthogonal set of vectors. Then

aBk = aBk

= (a‖ + a⊥)Bk

= a‖Bk + a⊥Bk

=

(
k∑
i=1

αibi

)
Bk + a⊥Bk

=

(
k∑
i=1

αi(−1)i−1(bi · bi)b1 · · · b̌i · · · bk

)
+ a⊥b1 · · · bk

= 〈aBk〉k−1 + 〈aBk〉k+1,

(4.4.10)

where a‖ ∈ span(b1, . . . , bk), a⊥ ∈ span(b1, . . . , bk)
⊥, and the check-mark denotes a missing

factor. Similarly for Bka.

Theorem 4.4.11 (Grades in a geometric product of blades). Let Ak, Bl ∈ Cl(V )
be a k-vector, and an l-vector, respectively. Then

AkBl =
m∑
i=0

〈AkBl〉|k−l|+2i, (4.4.11)

where m = 1
2
(k + l − |k − l|).

Theorem 4.4.12 (Cancellation of grades). Let a ∈ V , and Bk ∈ Cl(V ) be a k-vector.
Then

aBk + B̂ka =
〈
aBk + B̂ka

〉
k−1

aBk − B̂ka =
〈
aBk − B̂ka

〉
k+1

.
(4.4.12)

Proof. By Theorem 4.4.3,

〈aBk〉k−1 =
˜̃
〈aBk〉k−1

=
˜〈
ãBk

〉
k−1

= (−1)
(k−1)(k−2)

2

〈
B̃kã

〉
k−1

= (−1)
(k−1)(k−2)

2 (−1)
k(k−1)

2 〈Bka〉k−1

= (−1)(k−1)2〈Bka〉k−1

= (−1)k−1〈Bka〉k−1

= −
〈
B̂ka

〉
k−1

,

(4.4.13)

63



where we used the identity (−1)(k−1)2 = (−1)k−1. By Theorem 4.4.11,

aBk + B̂ka =
〈
aBk + B̂ka

〉
k−1

+
〈
aBk + B̂ka

〉
k+1

=
〈
aBk + B̂ka

〉
k+1

.
(4.4.14)

Similarly for aBk − B̂ka.

Theorem 4.4.13 (Factors can be swapped in 0-grade-selection). Let A,B ∈
Cl(V ). Then

〈AB〉0 = 〈BA〉0. (4.4.15)

Proof. By linearity, we only need to prove the result for k-vectors. Let Ak, Bl ∈ Cl(V )
be a k-vector, and an l-vector, respectively. Assume k 6= l. Then by Theorem 4.4.11
〈AkBl〉0 = 0 = 〈BlAk〉, and the result holds. Assume k = l. Then by Theorem 4.4.3

〈AkBk〉0 = ˜〈AkBk〉0
=
〈
ÃkBk

〉
0

=
〈
B̃kÃk

〉
0

= 〈BkAk〉0,

(4.4.16)

and the result holds.

4.5 Exterior product

The exterior product is the function ∧ : Cl(V )2 → Cl(V ) defined by

A ∧B =
n∑
k=0

n∑
l=0

〈AkBl〉k+l. (4.5.1)

The exterior algebra of V is the vector space Cl(V ) equipped with the exterior product,
denoted by G(V ). An outer-morphism from V to W is an algebra homomorphism
f : G(V ) → G(W ) such that f(V ) ⊂ W . The set of outer-morphisms from V to W is
denoted by Out(V,W ). We also denote Out(V ) = Out(V, V ).

Remark 4.5.1. The G in G(V ) stands for Hermann Grassmann, the inventor of exterior
algebra.

Theorem 4.5.2 (Exterior product is bilinear). The exterior product is bilinear.

Proof. The geometric product is bilinear, and the grade selection operator is linear.

Theorem 4.5.3 (Exterior product is associative). The exterior product is associa-
tive.
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Proof. By bilinearity, we only need to show associativity for k-vectors. Let Ak, Bl, Cm ∈
Cl(V ), where Ak is a k-vector, Bl is an l-vector, and Cm is an m-vector. Then

(Ak ∧Bl) ∧ Cm = 〈AkBl〉k+l ∧ Cm (4.5.2)
=

〈
〈AkBl〉k+lCm

〉
(k+l)+m

(4.5.3)

=
〈
〈AkBlCm〉(k+l)+m

〉
(k+l)+m

(4.5.4)

=
〈
〈AkBlCm〉k+(l+m)

〉
k+(l+m)

(4.5.5)

=
〈
Ak〈BlCm〉l+m

〉
k+(l+m)

(4.5.6)

= Ak ∧ 〈BlCm〉l+m (4.5.7)
= Ak ∧ (Bl ∧ Cm). (4.5.8)

Theorem 4.5.4 (Exterior product with a scalar). If B ∈ Cl(V ), and α ∈ R, then
α ∧B = αB = B ∧ α.

Proof. By bilinearity, we only need to prove the result for the k-vectors. Let α ∈ R, and
Bk ∈ Cl(V ) be a k-vector. Then

α ∧Bk = 〈αBk〉k = α〈Bk〉k = αBk.

Similarly, Bk ∧ α = αBk.

Theorem 4.5.5 (Exterior product is alternating for blades). Let Ak ∈ Cl(V ) be a
k-blade. Then

Ak ∧ Ak = 0. (4.5.9)

Proof. Since by Theorem 4.3.3 A2
k ∈ R,

Ak ∧ Ak =
〈
A2
k

〉
2

= 0.
(4.5.10)

Example 4.5.6 (Exterior product is not alternating in general). Theorem 4.5.5
does not hold in general for multi-vectors; for example, 1 ∧ 1 = 1 6= 0. It does not hold
in general even for k-vectors; for example, if {e1, e2, e3, e4} ⊂ V is linearly independent,
then by Theorem 4.5.7

(e1 ∧ e2 + e3 ∧ e4) ∧ (e1 ∧ e2 + e3 ∧ e4) = 2(e1 ∧ e2 ∧ e3 ∧ e4) 6= 0. (4.5.11)

On the other hand, there are non-blades with a zero exterior-square; for example

(e1 + e1 ∧ e2) ∧ (e1 + e1 ∧ e2) = 0. (4.5.12)

Theorem 4.5.7 (Non-zero exterior product is equivalent to linear independence
for vectors). Let A = {a1, . . . , ak} ⊂ V . Then A is linearly independent if and only if

a1 ∧ · · · ∧ ak 6= 0. (4.5.13)
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Proof. Assume a1 ∧ · · · ∧ ak 6= 0, and consider the equation

k∑
i=1

αiai = 0, (4.5.14)

where α ∈ Rk. Multiplying this equation by the exterior product with a1 ∧ · · · ∧ aj−1

from the left, and with aj+1 ∧ · · · ∧ ak from the right gives, by Theorem 4.5.5,

αj(a1 ∧ · · · ∧ ak) = 0. (4.5.15)

Since a1 ∧ · · · ∧ ak 6= 0, by the properties of a vector space αj = 0, for all j ∈ [1, k].
Therefore {a1, . . . , ak} is linearly independent. Assume A is linearly independent. We
will prove that a1 ∧ · · · ∧ ak 6= 0 by induction. The claim holds trivially for k = 1.
Assume the claim holds for k − 1, where k > 1. Since A is independent, by Theorem
2.2.13 {a1, . . . , ak−1} is linearly independent. It follows that a1 ∧ · · · ∧ ak−1 6= 0. Suppose
a1 ∧ · · · ∧ ak = 0. TODO.

Theorem 4.5.8 (Blades can be reshaped). Let A = {a1, . . . , ak} ⊂ V and B =
{b1, . . . , bk} ⊂ V be linearly independent sets of vectors such that span(A) = span(B).
Then there exists a unique β ∈ R \ {0}, such that

b1 ∧ · · · ∧ bk = β(a1 ∧ · · · ∧ ak). (4.5.16)

Proof. Since A is a basis for span(A), and B ⊂ span(A), there exists a unique αi ∈ Rk

such that

bi =
k∑
j=1

αijaj. (4.5.17)

Now

b1 ∧ · · · ∧ bk =

(
k∑

j1=1

α1j1aj1

)
∧ · · · ∧

(
k∑

jk=1

α1jkajk

)

=
k∑

j1=1

· · ·
k∑

jk=1

α1j1 · · ·αkjk(aj1 ∧ · · · ∧ ajk)

=
∑

J=(j1,...,jk)∈σ(k)

α1j1 · · ·αkjk(aj1 ∧ · · · ∧ ajk).

=
∑

J=(j1,...,jk)∈σ(k)

(−1)ε(J)α1j1 · · ·αkjk(a1 ∧ · · · ∧ ak)

= det([α1, . . . , αk])(a1 ∧ · · · ∧ ak).

(4.5.18)

Let β = det([α1, . . . , αk]). By Theorem 4.5.7, a1 ∧ · · · ∧ ak 6= 0, and b1 ∧ · · · ∧ bk 6= 0.
Therefore β 6= 0.

Theorem 4.5.9 (Exterior products of vectors are exactly the blades). Let Ak ∈
Cl(V ). Then Ak is a k-blade if and only if there exists A = {a1, . . . , ak} ⊂ V such that

Ak = a1 ∧ · · · ∧ ak. (4.5.19)
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Proof. Assume Ak = a1 · · · ak is a k-blade, where {a1, . . . , ak} ⊂ V is an orthogonal set.
If k = 0 or k = 1, then the claim holds. Assume k > 1. By induction on the definition of
the wedge product,

a1 · · · ak = 〈a1 · · · ak〉k
= a1 ∧ (a2 · · · ak)
= · · ·
= a1 ∧ · · · ∧ ak.

(4.5.20)

Assume Ak = a1 ∧ · · · ∧ ak, where A = {a1, . . . , ak} ⊂ V . If Ak = 0, then Ak is a k-blade
by definition. If Ak 6= 0, then Theorem 4.5.7 shows that A is linearly independent. By
Theorem 4.5.8 we may choose an orthogonal linearly independent set B = {b1, . . . , bk} ⊂
V such that span(B) = span(A), and Ak = b1∧· · ·∧bk. Then, by the above, Ak = b1 . . . bk.
Therefore Ak is a k-blade.

Theorem 4.5.10 (Exterior product is N-graded-commutative). If Ak ∈ Cl(V ) is
a k-vector, and Bl ∈ Cl(V ) is an l-vector, then Ak ∧Bl = (−1)klBl ∧ Ak.

Proof. By linearity, we only need to prove the result for k-blades. Let Ak = a1 ∧ · · · ∧ ak,
and Bk = b1 ∧ · · · ∧ bl, where A = {a1, . . . , ak} ⊂ V , and B = {b1, . . . , bl} ⊂ V . Assume
k = 0, or l = 0. Then by Theorem 4.5.4

Ak ∧Bl = AkBl

= BlAk

= Bl ∧ Ak,
(4.5.21)

and the result holds. Assume k = l = 1. By Theorem 4.4.3,

a1 ∧ b1 = 〈a1b1〉2

=
˜̃
〈a1b1〉2

= (−1)
2(2−1)

2

〈
ã1b1

〉
2

= −〈b1a1〉2
= −b1 ∧ a1,

(4.5.22)

and the result holds. Assume k > 1, and l > 0. Then by associativity and repeated
swapping,

Ak ∧Bl = Ak−1 ∧ ak ∧Bl

= (−1)lAk−1 ∧Bl ∧ ak
= · · ·
= (−1)klBl ∧ Ak.

(4.5.23)
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Theorem 4.5.11 (Exterior product is Z2-graded-commutative). Let A ∈ Cl(V ),
and B ∈ Cl(V ). Then

〈A〉+ ∧ 〈B〉+ = +〈B〉+ ∧ 〈A〉+,
〈A〉+ ∧ 〈B〉− = +〈B〉− ∧ 〈A〉+,
〈A〉− ∧ 〈B〉+ = +〈B〉+ ∧ 〈A〉−,
〈A〉− ∧ 〈B〉− = −〈B〉− ∧ 〈A〉−.

(4.5.24)

Proof.

〈A〉+ ∧ 〈B〉+ =

bn/2c∑
k=0

A2k

 ∧
bn/2c∑

l=0

B2l


=

bn/2c∑
k=0

bn/2c∑
l=0

A2k ∧B2l

=

bn/2c∑
k=0

bn/2c∑
l=0

(−1)(2k)(2l)B2l ∧ A2k

=

bn/2c∑
k=0

bn/2c∑
l=0

B2l ∧ A2k

=

bn/2c∑
l=0

B2l

 ∧
bn/2c∑

k=0

A2k


= 〈B〉+ ∧ 〈A〉+,

(4.5.25)

where we used Theorem 4.5.10. Similarly for other combinations.

Theorem 4.5.12 (Exterior product is alternating for odd elements). Let A ∈
Cl(V ). Then

〈A〉− ∧ 〈A〉− = 0. (4.5.26)

Proof. This is immediate from Theorem 4.5.11.

Theorem 4.5.13 (Exterior product from geometric product). Let a ∈ V and
B ∈ Cl(V ). Then

a ∧B =
aB + B̂a

2
,

B ∧ a =
Ba+ aB̂

2
.

(4.5.27)

Proof. By linearity we only need to prove the result for k-blades. Let Bk ∈ Cl(V ) be a
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k-blade. By Theorem 4.4.12,

2(a ∧Bk) = 2〈aBk〉k+1

=
〈(
aBk − B̂ka

)
+
(
aBk + B̂ka

)〉
k+1

=
〈
aBk − B̂ka

〉
k+1

+
〈
aBk + B̂ka

〉
k+1

=
〈
aBk + B̂ka

〉
k+1

= aBk + B̂ka.

(4.5.28)

By Theorem 4.5.10,

2(Bk ∧ a) = 2(−1)k(a ∧Bk)

= (−1)k(aBk + B̂ka)

= Bka+ aB̂k.

(4.5.29)

Theorem 4.5.14 (Grade selection commutes with vector-preserving homo-
morphisms). Let f : G(V ) → G(W ) be an algebra homomorphism (algebra anti-
homomorphism). Then

f(〈A〉k) = 〈f(A)〉k (4.5.30)

if and only if f(V ) ⊂ W .

Proof. We will prove the result assuming f is an algebra homomorphism; the proof for
the algebra anti-homomorphism is almost identical. Assume f(V ) ⊂ W . By linearity we
only need prove the result for l-blades. Let Al = a1 ∧ · · · ∧ al ∈ Cl(V ) be an l-blade,
where {a1, . . . , al} ⊂ V . Now

f(Al) = f(a1 ∧ · · · ∧ al)
= f(a1) ∧ · · · ∧ f(al).

(4.5.31)

Then f(Al) is also an l-blade, since each f(ai) ∈ W . Assume l 6= k. Then f(〈Al〉k) =
0 = 〈f(Al)〉k, and the result holds. Assume l = k. Then

f(〈Ak〉k) = f(Ak)

= 〈f(Ak)〉k,
(4.5.32)

and the result holds. Assume f(〈A〉k) = 〈f(A)〉k holds. Then in particular

f(a) = 〈f(a)〉1, (4.5.33)

for all a ∈ V . Therefore f(V ) ⊂ W .

Theorem 4.5.15 (Vector-preserving homomorphisms are outermorphisms). Let
f : Cl(V ) → Cl(W ) be an algebra homomorphism (anti-homomorphism). If f(V ) ⊂ W ,
then f is an outermorphism (anti-outermorphism).
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Proof. We will prove the result assuming f is an algebra homomorphism; the proof for
the algebra anti-homomorphism is almost identical. By linearity we only need prove the
result for k-vectors. Let Ak, Bl ∈ Cl(V ) be a k-vector, and an l-vector, respectively. Then
by Theorem 4.4.3

f(Ak ∧Bl) = f(〈AkBl〉k+l)

= 〈f(AkBl)〉k+l

= 〈f(Ak)f(Bl)〉k+l

= f(Ak) ∧ f(Bl).

(4.5.34)

Therefore f is an outermorphism.

Example 4.5.16 (Outermorphism which is not an algebra homomorphism).
There are outermorphisms which are not algebra homomorphisms Cl(V ) → Cl(W ). For
example, if f : G(V )→ G(W ) is an outermorphism such that f|V is not orthogonal, then
by Theorem 4.2.4 f is not an algebra homomorphism Cl(V )→ Cl(W ).

Theorem 4.5.17 (Non-zero exterior product implies linear independence for
non-scalar blades). Let {A1, . . . , Ak} ⊂ Cl(V ) \ R be a set of non-scalar blades, such
that A1 ∧ · · · ∧ Ak 6= 0. Then {A1, . . . , Ak} is linearly independent.

Proof. Assume A1 ∧ · · · ∧ Ak 6= 0, and consider the equation

k∑
i=1

αiAi = 0, (4.5.35)

where α ∈ Rk. Multiplying this equation by the exterior product with A1 ∧ · · · ∧ Aj−1

from the left, and with Aj+1 ∧ · · · ∧ Ak from the right gives

αj(A1 ∧ · · · ∧ Ak) = 0. (4.5.36)

Since A1 ∧ · · · ∧ Ak 6= 0, by the properties of a vector space αj = 0, for all j ∈ [1, k].
Therefore {A1, . . . , Ak} is linearly independent.

Example 4.5.18. The converse of Theorem 4.5.7 does not hold in full generality. For
example, while e1∧e2 and e2∧e3 are linearly independent in Cl(V )3, (e1∧e2)∧(e2∧e3) = 0.
However, Theorem 4.5.7 shows that the converse holds for vectors.

Remark 4.5.19. The exterior algebra G(V ) is algebra-isomorphic to Cl(V, 0), where 0
is the zero function V 2 → R.

4.6 Blades

Theorem 4.6.1 (Some k-vectors are always blades). Let V be an n-dimensional
vector space. Then 0-vectors, 1-vectors, (n−1)-vectors, and n-vectors in G(V ) are blades.

Proof. For 0-vectors and 1-vectors, the result is by definition. For n-vectors the result
is obvious, because n-vectors have dimension 1, and so are spanned by a single n-blade.
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Let A = {a1, . . . , an} ⊂ V be a basis of V . Then each (n− 1)-vector An−1 ∈ Cl(V ) is of
the form

An−1 =
n∑
i=1

αi(a1 ∧ · · · ∧ ǎi ∧ · · · ∧ an), (4.6.1)

where α ∈ Rn, and the check-mark denotes a missing factor. When n = 1, the (n −
1)-vectors are scalars, and so blades. Assume n ≥ 2. Suppose for a moment that
α2 · · ·αn−1 6= 0. We claim that An−1 can be rewritten as

An−1 =
1

α2 · · ·αn−1

n−1∧
i=1

(αi+1ai + αiai+1), (4.6.2)

which directly shows that every (n − 1)-vector is an (n − 1)-blade. When n = 2, the
rewriting gives

An−1 = α2a1 + α1a2. (4.6.3)

Thus the result holds. Assume the result holds for (n − 1), where n > 2. First notice
that

αn(a1 ∧ · · · ∧ an−1) =

[
1

α2 · · ·αn−1

n−2∧
i=1

αiai+1

]
∧ (αnan−1)

=

[
1

α2 · · ·αn−1

n−2∧
i=1

(αi+1ai + αiai+1)

]
∧ (αnan−1).

(4.6.4)

Then by induction

An−1 =
n∑
i=1

αi(a1 ∧ · · · ∧ ǎi ∧ · · · ∧ an)

=

[
n−1∑
i=1

αi(a1 ∧ · · · ∧ ǎi ∧ · · · ∧ an−1)

]
∧ an + αn(a1 ∧ · · · ∧ an−1)

=

[
1

α2 · · ·αn−2

n−2∧
i=1

(αi+1ai + αiai+1)

]
∧ an +

[
1

α2 · · ·αn−1

n−2∧
i=1

(αi+1ai + αiai+1)

]
∧ (αnan−1)

=

[
1

α2 · · ·αn−1

n−2∧
i=1

(αi+1ai + αiai+1)

]
∧ (αnan−1 + αn−1an)

=
1

α2 · · ·αn−1

n−1∧
i=1

(αi+1ai + αiai+1).

(4.6.5)

Suppose now that αi = 0. Since all the remaining basis (n− 1)-blades contain the factor
ai, it can be factored out by the exterior product; similarly for all ai for which αi = 0.
What remains is a simplified problem of factoring (n − 1 − k)-vectors for a subspace of
dimension (n− k), where none of the factors are zero. Since by induction we know how
to do this, every (n− 1)-vector is an (n− 1)-blade.
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Remark 4.6.2 (Non-blade k-vectors exists if and only if dim(V ) > 3). By The-
orem 4.6.1, if dim(V ) ≤ 3, then all k-vectors of G(V ) are k-blades. On the other hand,
if dim(V ) > 3, then G(V ) contains k-vectors which are not k-blades; take for example
e1 ∧ e2 + e3 ∧ e4, where {e1, . . . , e4} ⊂ V is linearly independent.

4.7 Scalar product

The scalar product is a function ∗ : Cl(V )2 → R defined by

A ∗B =
〈
AB̃
〉

0
. (4.7.1)

Theorem 4.7.1 (Scalar product is bilinear). The scalar product is bilinear.

Proof. The geometric product is bilinear, and the grade-selection operator is linear.

Theorem 4.7.2 (Scalar product is symmetric). The scalar product is symmetric.

Proof. By linearity, we only need to prove the result for k-vectors. Let Ak, Bl ∈ Cl(V )
be a k-vector, and an l-vector, respectively. By Theorem 4.4.3,

Ak ∗Bl =
〈
AkB̃l

〉
0

=
˜〈
AkB̃l

〉
0

=

〈
ÃkB̃l

〉
0

=
〈
BlÃk

〉
0

= Bl ∗ Ak.

(4.7.2)

Theorem 4.7.3 (Scalar product on vectors). Let a, b ∈ V . Then

a ∗ b = a · b. (4.7.3)

Proof. By Theorem 4.7.2,

2(a ∗ b) = a ∗ b+ b ∗ a (4.7.4)
= 〈ab〉0 + 〈ba〉0 (4.7.5)
= 〈ab+ ba〉0 (4.7.6)
= 2(a · b). (4.7.7)

Remark 4.7.4. Theorems 4.7.1, 4.7.2, and 4.7.3 show that the scalar product extends
the dot product · in V to a symmetric bilinear form in Cl(V ). This makes the theory of
bilinear spaces, particular that of finite-dimensional ones, applicable in Cl(V ).
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Theorem 4.7.5 (Scalar product is zero for blades of different grade). Let Ak, Bl ∈
Cl(V ) be a k-vector, and an l-vector, respectively. If k 6= l, then

Ak ∗Bl = 0. (4.7.8)

Proof. By Theorem 4.4.11,
〈
AkB̃l

〉
0

= 0.

Theorem 4.7.6 (Determinant formula for the scalar product of blades). Let
Ak, Bk ∈ Cl(V ) be k-blades such that Ak = a1 · · · ak and Bk = b1 · · · bk, where {a1, . . . , ak} ⊂
V and {b1, . . . , bk} ⊂ V are orthogonal sets of vectors. Then

Ak ∗Bk =

∣∣∣∣∣∣∣∣∣
a1 · b1 · · · a1 · bk

... . . . ...

ak · b1 · · · ak · bk

∣∣∣∣∣∣∣∣∣ (4.7.9)

Theorem 4.7.7 (Scalar product for k-versors). Let A = a1 · · · ak ∈ Cl(V ) be a
k-versor, where {a1, . . . , ak} ⊂ V is a set of vectors. Then

A ∗ A =
k∏
i=1

ai · ai. (4.7.10)

Proof.

A ∗ A =
〈
AÃ
〉

0

= 〈a1 · · · akak · · · a1〉0

=
k∏
i=1

a2
i

=
k∏
i=1

ai · ai.

(4.7.11)

Theorem 4.7.8 (Scalar product is positive-definite exactly when the dot prod-
uct is). The scalar product is positive-definite (positive semi-definite) if and only if · is
positive-definite (positive semi-definite).

Proof. By linearity, and Theorem 4.7.5, we only need to prove the result for k-blades. As-
sume · is positive-definite. Let Ak = a1 · · · ak ∈ Cl(V ) be a k-blade, where {a1, . . . , ak} ⊂
V is an orthogonal set of vectors. Then Ak 6= 0 implies a1, . . . , ak 6= 0. By Theorem 4.7.7
and positive-definiteness of ·,

Ak ∗ Ak =
k∏
i=1

ai · ai > 0. (4.7.12)

Therefore the scalar product is positive-definite. Assume · is not positive-definite. Then
there exists an a ∈ V \ {0} such that a · a ≤ 0. By Theorem 4.7.3, a · a = a ∗ a. Therefore
the scalar product is not positive-definite. The proof for the positive semi-definite case
is similar.
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Theorem 4.7.9 (Vector-preserving homomorphisms are orthogonal). Let f :
Cl(V )→ Cl(W ) be an algebra homomorphism such that f(V ) ⊂ W . Then f is orthogonal.

Proof. By Theorem 4.4.3,

f(A) ∗ f(B) =
〈
f(A)f̃(B)

〉
0

=
〈
f(A)f

(
B̃
)〉

0

=
〈
f(AB̃)

〉
0

= f
(〈
AB̃
〉

0

)
= f(A ∗B)

= A ∗B.

(4.7.13)

Therefore f is orthogonal.

Remark 4.7.10. Theorem 4.7.9 generalizes Theorem 4.2.4 for the dot product to the
scalar product.

Theorem 4.7.11 (Versor inverse is also an inverse of the scalar product). Let
B ∈ Cl(V ) be a k-versor such that B ∗ B 6= 0. Then B

B∗B is an inverse of B with respect
to ∗.

Proof.

B ∗ B

B ∗B
=
B ∗B
B ∗B

= 1 =
B ∗B
B ∗B

=
B

B ∗B
∗B. (4.7.14)

Remark 4.7.12. The inverse of an invertible k-versor B ∈ Cl(V ) with respect to the
scalar product, given in Theorem 4.7.11, equals the inverse of B with respect to the
geometric product, given in Theorem 4.3.2, since B ∗ B =

〈
BB̃

〉
0

= BB̃. However,
the inverse for the scalar product is not unique (scalar product is not associative). For
example, if a, b ∈ Cl(R2,0), with a = e1, b = e1 + αe2, and α ∈ R, then a · b = 1 = b · a,
no matter what α is.

4.8 Contraction

The left contraction is a function c : Cl(V )→ Cl(V ) defined by

A cB =
n∑
k=0

n∑
l=0

〈AkBl〉l−k. (4.8.1)

The right contraction is a function b : Cl(V )→ Cl(V ) defined by

A bB =
n∑
k=0

n∑
l=0

〈AkBl〉k−l. (4.8.2)
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The inner product is a function · : Cl(V )→ Cl(V ) defined by

A ·B =
n∑
k=0

n∑
l=0

〈AkBl〉|k−l|. (4.8.3)

Remark 4.8.1 (Using both contractions is unnecessary, but provides symme-
try). It is enough to use either the left or the right contraction in derivations. For this
reason, it is often just the left contraction which is defined, and then it is called the
contraction. However, using both reveals symmetry in equations and is sometimes more
convenient in derivations; this is why we define them both. This is similar to the use of
both less-than and greater-than.

Theorem 4.8.2 (Contraction is bilinear). Contraction is bilinear.

Proof. Geometric product is bilinear, and the grade selection operator is linear.

Remark 4.8.3. Contraction is not associative or commutative.

Theorem 4.8.4 (Right contraction to left contraction). Let Ak, Bl ∈ Cl(V ) be a
k-vector, and an l-vector, respectively. Then

Ak bBl = (−1)l(k+1)Bl c Ak. (4.8.4)

Proof. By Theorem 4.4.3,

Ak bBl = 〈AkBl〉k−l

=
˜̃
〈AkBl〉k−l

= (−1)
(k−l)(k−l−1)

2

〈
ÃkBl

〉
k−l

= (−1)
(k−l)(k−l−1)

2

〈
B̃lÃk

〉
k−l

= (−1)
(k−l)(k−l−1)

2 (−1)
l(l−1)

2 (−1)
k(k−1)

2 〈BlAk〉k−l
= (−1)

(k−l)(k−l−1)
2 (−1)

l(l−1)
2 (−1)

k(k−1)
2 Bl c Ak

= (−1)k
2+l2−k−klBl c Ak

= (−1)k+l−k−klBl c Ak
= (−1)l(1−k)Bl c Ak
= (−1)l(k+1)Bl c Ak,

(4.8.5)

where we used the identities (−1)k
2

= (−1)k = (−1)−k = (−1)k+2l.

Theorem 4.8.5 (Contraction of a scalar). Let α ∈ R and B ∈ Cl(V ). Then

α cB = αB

B b α = αB.
(4.8.6)
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Proof. By linearity we only need to prove the result for the k-vectors. Let Bk ∈ Cl(V )
be a k-vector. Now

α cBk = 〈αBk〉k
= αBk.

(4.8.7)

By Theorem 4.8.4,

Bk b α = (−1)0α cBk

= αBk.
(4.8.8)

Theorem 4.8.6 (Contraction on a scalar). Let A ∈ Cl(V ), and β ∈ R. Then

A c β = β〈A〉0
β b A = β〈A〉0.

(4.8.9)

Proof. By linearity we only need to prove the result for the k-vectors. Let Ak ∈ Cl(V )
be a k-vector. Now

Ak c β = 〈Akβ〉−k
= β〈Ak〉−k
= β〈Ak〉0.

(4.8.10)

By Theorem 4.8.4,

β b Ak = (−1)kAk c β
= (−1)kβ〈Ak〉0
= β〈Ak〉0,

(4.8.11)

since the result is non-zero only if k = 0.

Theorem 4.8.7 (Contraction between k-vectors of the same grade). Let Ak, Bk ∈
Cl(V ) be k-vectors. Then

Ak cBk = Ak ∗ B̃k

Bk b Ak = Ak ∗ B̃k.
(4.8.12)

Proof.

Ak cBk = 〈AkBk〉0
= Ak ∗ B̃k.

(4.8.13)

By Theorem 4.8.4,

Bk b Ak = (−1)k(k+1)Ak cBk

= Ak ∗ B̃k.
(4.8.14)
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Theorem 4.8.8 (Contraction from the geometric product). Let a ∈ V and B ∈
Cl(V ). Then

a cB =
aB − B̂a

2

B b a =
Ba− aB̂

2

(4.8.15)

Proof. By linearity we only need to prove the result for k-blades. Let Bk ∈ Cl(V ) be a
k-blade. By Theorem 4.4.12,

2(a cBk) = 2〈aBk〉k−1

=
〈(
aBk − B̂ka

)
+
(
aBk + B̂ka

)〉
k−1

=
〈
aBk − B̂ka

〉
k−1

+
〈
aBk + B̂ka

〉
k−1

=
〈
aBk − B̂ka

〉
k−1

= aBk − B̂ka.

(4.8.16)

By Theorem 4.8.4,

2(Bk b a) = (−1)k+12(a cBk)

= (−1)k+1(aBk − B̂ka)

= Bka− aB̂k.

(4.8.17)

Theorem 4.8.9 (First duality). Let A,B,C ∈ Cl(V ). Then

(A ∧B) c C = A c (B c C)

C b (B ∧ A) = (C bB) b A.
(4.8.18)

Proof. By linearity we only need to prove the result for k-blades. Let Ak = a1∧· · ·∧ak ∈
Cl(V ) be a k-blade, where {a1, . . . , ak} ⊂ V , and Cm ∈ Cl(V ) be an m-blade. First note
that 〈

ak ∧ (Âk−1Cm)
〉
m−k

= 0. (4.8.19)

This is trivially true when k > m. If k ≤ m, then the lowest grade is given by Theorem
4.4.11 as m− k+ 2, which is greater than the selected grade m− k. By Theorems 4.5.13
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and 4.8.8,

Ak c Cm = 〈AkCm〉m−k
= 〈(Ak−1 ∧ ak)Cm〉m−k

=
1

2

〈
(Ak−1ak + akÂk−1)Cm

〉
m−k

=
1

2

〈
Ak−1akCm − Ak−1Ĉmak + Ak−1Ĉmak + akÂk−1Cm

〉
m−k

=
〈
Ak−1(ak c Cm) + (ak ∧ (Âk−1Cm))

〉
m−k

= 〈Ak−1(ak c Cm)〉(m−1)−(k−1)

= Ak−1 c (ak c Cm)

= . . .

= a1 c (a2 c · · · (ak c Cm) · · · ).

(4.8.20)

Let Bl = a1 ∧ · · · ∧ bl ∈ Cl(V ) be an l-blade, where {b1, . . . , bl} ⊂ V . Then

(Ak ∧Bl) c Cm = a1 c (· · · (ak c (b1 c · · · (bl c Cm) · · · )
= a1 c (· · · (ak c (Bl c Cm)) · · · )
= Ak c (Bl c Cm).

(4.8.21)

By Theorem 4.8.4,

Cm b (Bl ∧ Ak) = (−1)(l+k)(m+1)(Bl ∧ Ak) c Cm
= (−1)(l+k)(m+1)(−1)lk(Ak ∧Bl) c Cm
= (−1)(l+k)(m+1)(−1)lkAk c (Bl c Cm)

= (−1)(l+k)(m+1)(−1)lk(−1)l(m+1)Ak c (Cm bBl)

= (−1)(l+k)(m+1)(−1)lk(−1)l(m+1)(−1)k(m+l+1)(Cm bBl) b Ak
= (−1)(l+k)(m+1)(−1)l(m+1)(−1)k(m+1)(Cm bBl) b Ak
= (−1)(l+k)(m+1)(−1)(l+k)(m+1)(Cm bBl) b Ak
= (Cm bBl) b Ak.

(4.8.22)

Theorem 4.8.10 (Contraction of a vector with a geometric product). Let a ∈ V ,
and B1, . . . , Bk ∈ Cl(V ). Then

a c (B1 · · ·Bk) =
k∑
i=1

B̂1 · · · B̂i−1(a cBi)Bi+1 · · ·Bk

(B1 · · ·Bk) b a =
k∑
i=1

B1 · · ·Bi−1(Bi b a)B̂i+1 · · · B̂k.

(4.8.23)
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Proof. The result holds trivially for k = 1. Assume k > 1. By Theorem 4.8.8 and
induction,

2(a c (B1 · · ·Bk)) = a(B1 · · ·Bk)− ̂B1 · · ·Bka

= (aB1 · · ·Bk−1)Bk − ( ̂B1 · · ·Bk−1a)Bk + ( ̂B1 · · ·Bk−1)aBk − ( ̂B1 · · ·Bk−1)B̂ka

= (aB1 · · ·Bk−1 − ̂B1 · · ·Bk−1a)Bk + ( ̂B1 · · ·Bk−1)(aBk − B̂ka)

= 2(a c (B1 · · ·Bk−1))Bk + 2( ̂B1 · · ·Bk−1)(a cBk)

= . . .

= 2
k∑
i=1

B̂1 · · · B̂i−1(a cBi)Bi+1 · · ·Bk.

(4.8.24)

Again, by Theorem 4.8.8,

(B1 · · ·Bk) b a = â c ( ̂B1 · · ·Bk)

=
k∑
i=1

B1 · · ·Bi−1(â c B̂i)B̂i+1 · · · B̂k

=
k∑
i=1

B1 · · ·Bi−1(Bi b a)B̂i+1 · · · B̂k.

(4.8.25)

Remark 4.8.11 (Varying definitions for the contraction). The literature uses vary-
ing definitions in place of the (left) contraction. These definitions agree in common cases,
but differ in corner cases. It has been argued in [3] that the definition we give is the
most natural one, and also produces more information than the others. We shall now
review some of these commonly used definitions. The fat-dot product [2] is a function
•D : Cl(V )→ Cl(V ) defined by

A •D B =
n∑
k=0

n∑
l=0

〈AkBl〉|l−k|. (4.8.26)

If Ak, Bl ∈ Cl(V ) are a k-vector, and an l-vector, respectively, then

Ak •D Bl =

{
Ak cBl if k ≤ l

Ak bBl if k > l.
(4.8.27)

Since Ak c Bl = 0 for k > l, it may at first sound like a good idea to fill in the zeros
with something more useful. However, this misses the fact that the 0 result is itself
geometrically meaningful; it means that not all of Ak is contained in Bl. Therefore the
fat-dot product produces less information than the left or the right contraction. This
is especially problematic in a computer implementation of geometric algebra, where the
grades of the blades may be impossible to know in advance because of rounding errors.
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This results in the need to branch based on the grades of the blades to recover the lost
information. The Hestenes’s inner product [4] is a function •H : Cl(V ) → Cl(V )
defined by

A •H B =
n∑
k=1

n∑
l=1

〈AkBl〉|l−k|. (4.8.28)

It is otherwise equal to the fat-dot product, but it is zero when either argument is a
0-blade. In addition to missing the geometric significance of the 0-result, the Hestenes
inner product misses the geometric signifance of the left contraction with a scalar (a
0-blade). Again that information must be recovered by branching on the grades of the
blades. Suppose k, l > 0. Then

Ak cBl = Ak •D Bl = Ak •H Bl, if k ≤ l, and
Ak bBl = Ak •D Bl = Ak •H Bl, if k > l,

(4.8.29)

which shows that the definitions agree on most of the cases. Only the left contraction
and the right contraction produce the full amount of information.

4.9 Interplay

This sections contains theorems which relate the different products together.

Theorem 4.9.1 (Geometric decomposition). Let a ∈ V and B ∈ Cl(V ). Then

aB = a cB + a ∧B
Ba = B b a+B ∧ a.

(4.9.1)

Proof. By linearity, we only need to prove the result for k-vectors. Let Bk ∈ Cl(V ) be a
k-vector. By Theorem 4.4.10,

aBk = 〈aBk〉k−1 + 〈aBk〉k+1

= a cBk + a ∧Bk.
(4.9.2)

Theorem 4.9.2 (Exterior product of a vector with a geometric product). Let
a ∈ V , and B1, . . . , Bk ∈ Cl(V ). Then

a ∧ (B1 · · ·Bk) =

[
k−1∑
i=1

(
B̂1 · · · B̂i−1

)
(a cBi)(Bi+1 · · ·Bk)

]
+
(
B̂1 · · · B̂k−1

)
(a ∧Bk)

(B1 · · ·Bk) ∧ a = (B1 ∧ a)
(
B̂2 · · · B̂k

)
+

[
k∑
i=2

(B1 · · ·Bi−1)(Bi b a)
(
B̂i+1 · · · B̂k

)]
.

(4.9.3)

Proof. The result holds trivially for k = 1. Assume k > 1.
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Theorem 4.9.3 (Contraction of a vector with an exterior product). Let a ∈ V ,
and B1, . . . , Bk ∈ Cl(V ). Then

a c (B1 ∧ · · · ∧Bk) =
k∑
i=1

(
B̂1 ∧ · · · ∧ B̂i−1

)
∧ (a cBi) ∧ (Bi+1 ∧ · · · ∧Bk)

(B1 ∧ · · · ∧Bk) b a =
k∑
i=1

(B1 ∧ · · · ∧Bi−1) ∧ (Bi b a) ∧
(
B̂i+1 ∧ · · · ∧ B̂k

)
.

(4.9.4)

Proof. Theorem 4.8.10 works in particular for k-blades.

Theorem 4.9.4 (Geometric inverse is an inverse of contraction). Let Ak ∈ Cl(V )
be an invertible k-blade. Then

Ak c A−1
k = 1 = A−1

k c Ak
A−1
k b Ak = 1 = Ak b A−1

k .
(4.9.5)

Proof. By the definition of the left contraction

Ak c A−1
k =

〈
AkA

−1
k

〉
0

= 1

=
〈
A−1
k Ak

〉
0

= A−1
k c Ak.

(4.9.6)

Similarly for the right contraction.

Remark 4.9.5. As with the scalar product, the contraction inverse given in Theorem
4.9.4 is not unique (contraction is not associative). The same example applies as with
the scalar product.

4.10 Span

The span is a function Cl(V )→ P (V ) defined by

span(A) = {x ∈ V : x ∧ A = 0}. (4.10.1)

A multi-vector A ∈ Cl(V ) is called reducible, if there exists a ∈ V , and B ∈ Cl(V ), such
that

A = a ∧B. (4.10.2)

A multi-vector is called irreducible, if it is not reducible.

Theorem 4.10.1 (Span is a subspace). Let A ∈ Cl(V ). Then span(A) is a subspace
of V .

Proof. Let a, b ∈ span(A), and α, β ∈ R. Then

(αa+ βb) ∧ A = α(a ∧ A) + β(b ∧ A)

= 0.
(4.10.3)

Thus αa+ βb ∈ span(A). Therefore span(A) is a subspace of V .
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Theorem 4.10.2 (Span is intersection of grade spans). Let A ∈ Cl(V ). Then

span(A) =
n−1⋂
k=0

span(Ak). (4.10.4)

Proof. Assume a ∈ span(A). Then

a ∧ A = a ∧

(
n∑
k=0

Ak

)

=
n∑
k=0

a ∧ Ak.
(4.10.5)

Suppose this sum has non-zero terms. These terms are linearly independent, since they are
k-vectors of different grade. By definition they can not then sum to zero; a contradiction.
Therefore, if a ∧ A = 0, then

a ∧ Ak = 0, (4.10.6)
for all k ∈ [0, n]. Since a ∧ An = 0 always holds, we may sharpen this to k ∈ [0, n − 1].
Therefore a ∈

⋂n−1
k=0 span(Ak). Assume a ∈

⋂n−1
k=0 span(Ak). Then a ∧ Ak = 0, for all

k ∈ [0, n− 1], and it follows that a ∧ A = 0. Therefore a ∈ span(A).
Theorem 4.10.3 (Invertible outermorphisms preserve span). Let A ∈ Cl(V ), and
f : Cl(V )→ Cl(V ) be an invertible outermorphism. Then

span(f(A)) = f|V (span(A)). (4.10.7)

Proof.
span(f(A)) = {x ∈ V : x ∧ f(A) = 0}

= {x ∈ V : f(f−1(x)) ∧ f(A) = 0}
= {x ∈ V : f(f−1(x) ∧ A) = 0}
= {x ∈ V : f−1(x) ∧ A = 0}
= f|V (span(A)).

(4.10.8)

Theorem 4.10.4 (The common involutions preserve span). Let A ∈ Cl(V ). Then

span
(
Â
)

= span(A),

span
(
Ã
)

= span(A),

span
(
A
)

= span(A).

(4.10.9)

Proof. Since grade involution, reversion, and conjugation are all invertible outermor-
phisms, by Theorem 4.10.3

span
(
Â
)

= −span(A) = span(A),

span
(
Ã
)

= span(A),

span
(
A
)

= span
(˜̂
A

)
= span(A).

(4.10.10)
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Theorem 4.10.5 (Span by vectors). Let Ak = a1 ∧ · · · ∧ ak ∈ Cl(V ) be a k-blade,
where {a1, . . . , ak} ⊂ V , and Ak 6= 0. Then

span(Ak) = span({a1, . . . , ak}). (4.10.11)

Proof. Since Ak 6= 0, {a1, . . . , ak} is linearly independent by Theorem 4.5.7. Let x ∈ V .
Then

x ∈ span(Ak)

⇔x ∧ Ak = 0

⇔x ∧ a1 ∧ · · · ∧ ak = 0.

(4.10.12)

This is equivalent to {x}∪{a1, . . . , ak} being linearly dependent by Theorem 4.5.7, which
is equivalent to x ∈ span({a1, . . . , ak}) by Theorem 2.2.23 .

Example 4.10.6. Theorem 4.10.5 does not hold when Ak = 0. For example, consider
B = {e1, 2e1, . . . , ne1} ⊂ V ⊂ Cl(V )n, for n > 1. Then span(B) = span(e1), but
span(Ak) = span(0) = V .

Example 4.10.7. For α ∈ R, α 6= 0, span(α) = {0}. However, span(0) = V .

Theorem 4.10.8 (Blade factorizability is equivalent to non-trivial span). Let
Ak ∈ Cl(V ) \ {0} be a k-blade, and a ∈ V \ {0}. Then a ∈ span(Ak) if and only if there
exists a (k − 1)-blade Ak−1 ∈ Cl(V ) such that

Ak = a ∧ Ak−1. (4.10.13)

Proof. Assume a ∈ span(Ak). By Theorem 4.5.9, there exists a set A = {a1, . . . , ak} ⊂ V
such that

Ak = a1 ∧ · · · ∧ ak. (4.10.14)

Since Ak 6= 0, by Theorem 4.5.7 A is linearly independent. Since a ∈ span(Ak), by
Theorem 4.10.5 a ∈ span(A). Let B = {a, b2, . . . , bk} ⊂ V be linearly independent such
that span(B) = span(A). Then by Theorem 4.5.8 there exists a unique β ∈ R \ {0} such
that

Ak = β(a ∧ b2 ∧ · · · ∧ bk)
= a ∧ ((βb2) ∧ · · · ∧ bk).

(4.10.15)

We may then choose Ak−1 = (βb2) ∧ · · · ∧ bk. Assume there exists Ak−1 such that
Ak = a ∧ Ak−1. Then

a ∧ Ak = (a ∧ a) ∧ Ak−1

= 0.
(4.10.16)

Therefore a ∈ span(Ak).

Theorem 4.10.9 (Irreducible multi-vectors have trivial span). Let A ∈ Cl(V ) be
irreducible. Then

span(A) = {0}. (4.10.17)
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Proof.

Theorem 4.10.10 (Span of k-vectors). Let Ak ∈ Cl(V )\{0} be a k-vector, Bl ∈ Cl(V )
be an l-blade, and Cm ∈ Cl(V ) be an irreducible m-vector, such that

Ak = Bl ∧ Cm. (4.10.18)

Then span(Ak) = span(Bl).

Proof. Let n = dim(V ). The claim is trivial for m = 0. Assume m ≥ 1. By Theorem
4.6.1 n ≥ 4, and k ∈ [2, n− 2]. Assume x ∈ span(Bl). Then x ∧Bl = 0, and

x ∧ (Bl ∧ Cm) = (x ∧Bl) ∧ Cm
= 0.

(4.10.19)

Therefore x ∈ span(Ak). Assume x /∈ span(Bl). Then x ∧ Bl is a non-zero (l + 1)-blade.
Since Cm is irreducible, it can not have

Theorem 4.10.11. Let A ∈ Cl(V ) \ {0}. Then a ∈ span(A) \ {0} if and only if there
exists B ∈ Cl(V ) such that

A = a ∧B. (4.10.20)

Proof. Let A = Ck∧D, where Ck ∈ Cl(V ) is a k-blade of maximal grade, and D ∈ Cl(V ).
Then D must contain at least one grade Dl which can not factor out a non-zero vector.
By Theorem 4.10.8 span(Dl) = {0}. By Theorem 4.10.2, span(D) = {0}. It follows that
span(A) = span(Ck). The result follows from Theorem 4.10.8.

Theorem 4.10.12 (Span of non-zero exterior product is direct sum of factor
spans). Let Ak, Bl ∈ Cl(V ) be a k-blade, and an l-blade, respectively, such that Ak∧Bl 6=
0. Then

span(Ak ∧Bl) = span(Ak)u span(Bl). (4.10.21)

Proof. Decompose Ak = a1∧ · · ·∧ak, and Bl = b1∧ · · ·∧ bl, where A = {a1, . . . , ak} ⊂ V ,
and B = {b1, . . . , bl} ⊂ V . Since Ak ∧ Bl 6= 0, by Theorem 4.5.7 A ∪ B is linearly
independent. By Theorem 4.10.5,

span(Ak ∧Bl) = span({a1, . . . , ak, b1, . . . , bl})
= span({a1, . . . , ak})u span({b1, . . . , bl})
= span(Ak)u span(Bl).

(4.10.22)

Theorem 4.10.13 (Second duality). Let Ak, Cm ∈ Cl(V ) be a k-blade, and anm-blade,
respectively, such that span(Ak) ⊂ span(Cm), and B ∈ Cl(V ). Then

Ak ∧ (B c Cm) = (Ak cB) c Cm. (4.10.23)
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Proof. By linearity we only need to prove the result for blades. Let Ak = a1 ∧ · · · ∧ ak ∈
Cl(V ) be a k-blade, where {a1, . . . , ak} ⊂ V , Bl = b1 ∧ · · · ∧ bl be an l-blade, where
{b1, . . . , bl} ⊂ V , and Cm = c1∧· · ·∧ cm be an m-blade, where {c1, . . . , cm} ⊂ V . Assume
Ak ∈ R. Then the result holds trivially. Assume Cm ∈ R, Cm 6= 0. Then, because
span(Ak) ⊂ span(Cm), also Ak ∈ R, and thus the result holds. On the other hand,
if Cm = 0, then the result holds trivially. Assume Bl ∈ R, Bl 6= 0. Since we may
now assume Ak /∈ R, Ak c Bl = 0. On the other hand, since span(Ak) ⊂ span(Cm),
Ak ∧ Cm = 0, and thus the result holds. The result holds trivially for Bl = 0. Assume
from now on that none of Ak, Bl, or Cm is a scalar. We will prove the result by repeated
induction. Assume k = l = m = 1, and span(ak) ⊂ span(cm). Then ak = αcm. Now

ak ∧ (bl c cm) = cm ∧ (bl c ak)
= cm(bl c ak)
= cm(ak c bl)
= (ak c bl)cm
= (ak c bl) c cm.

(4.10.24)

Assume the result holds for k = 1, l = 1, and m − 1, with m > 1, and that span(ak) ⊂
span(Cm). Then by Theorem 4.10.12 either span(ak) ⊂ span(Cm−1), or span(ak) ⊂
span(cm). Assume the former; then ak∧Cm−1 = 0, which by Theorem 4.10.4 is equivalent
to ak ∧ Ĉm−1 = 0. Now

ak ∧ (bl c Cm) = ak ∧ (bl c (Cm−1 ∧ cm))

= ak ∧
(

(bl c Cm−1) ∧ cm +
(
Ĉm−1 ∧ (bl c cm)

))
= ak ∧ (bl c Cm−1) ∧ cm
= ((ak c bl) c Cm−1) ∧ cm
= (ak c bl)(Cm−1 ∧ cm)

= (ak c bl)(Cm).

(4.10.25)

Assume instead that span(ak) ⊂ span(cm); then ak ∧ cm = 0, and in particular ak = αcm.
Now

ak ∧ (bl c Cm) = ak ∧
(

(bl c Cm−1) ∧ cm +
(
Ĉm−1 ∧ (bl c cm)

))
= ak ∧ Ĉm−1 ∧ (bl c cm)

= cm ∧ Ĉm−1 ∧ (bl c ak)
= Cm−1 ∧ cm ∧ (ak c bl)
= Cm ∧ (ak c bl)
= (ak c bl) ∧ Cm
= (ak c bl) c Cm.

(4.10.26)
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Assume the result holds for k = 1, and l − 1, with l > 1. Then

(ak cBl) c Cm = (ak c (Bl−1 ∧ bl)) c Cm
=
(

(ak cBl−1) ∧ bl + B̂l−1 ∧ (ak c bl)
)
c Cm

=
(
bl ∧ ̂(ak cBl−1)

)
c Cm + (ak c bl)

(
B̂l−1 c Cm

)
= bl c

((
âk c B̂l−1

)
c Cm

)
+ (ak c bl)

(
B̂l−1 c Cm

)
= bl c

(
âk ∧

(
B̂l−1 c Cm

))
+ (ak c bl)

(
B̂l−1 c Cm

)
= (bl c âk) ∧

(
B̂l−1 c Cm

)
+ ak ∧

(
bl c
(
B̂l−1 c Cm

))
+ (ak c bl)

(
B̂l−1 c Cm

)
= ak ∧

(
bl c
(
B̂l−1 c Cm

))
= ak ∧

((
bl ∧ B̂l−1

)
c Cm

)
= ak ∧ ((Bl−1 ∧ bl) c Cm)

= ak ∧ (Bl c Cm).

(4.10.27)

Assume the result holds for k − 1. Then

Ak ∧ (Bl c Cm) = (Ak−1 ∧ ak) ∧ (Bl c Cm)

= ak ∧
(
Âk−1 ∧ (Bl c Cm)

)
= ak ∧

((
Âk−1 cBl

)
c Cm

)
=
(
ak c

(
Âk−1 cBl

))
c Cm

=
((
ak ∧ Âk−1

)
cBl

)
c Cm

= ((Ak−1 ∧ ak) cBl) c Cm
= (Ak cBl) c Cm.

(4.10.28)

Theorem 4.10.14 (Geometric product is sometimes contraction). Let Ak, Bl ∈
Cl(V ) be a k-blade and an l-blade, respectively. If span(Ak) ⊂ span(Bl), then

AkBl = Ak cBl. (4.10.29)

Proof. Let Bl = b1 ∧ · · · ∧ bl, where {b1, . . . , bl} ⊂ V , which we may assume to be
orthogonal by Theorem 4.5.8. Since span(Ak) ⊂ span(Bl), Ak = a1 ∧ · · · ∧ ak, where
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ai =
∑l

j=1 αi,jbj, and αi,j ∈ R. Now

AkBl =

((
l∑

j1=1

α1,j1bj1

)
∧ · · · ∧

(
l∑

jk=1

αk,jkbjk

))
(b1 ∧ · · · ∧ bl)

=
l∑

j1=1

· · ·
l∑

jk=1

α1,j1 · · ·αk,jk(bj1 ∧ · · · ∧ bjk)(b1 ∧ · · · ∧ bl)

=
∑

|{j1,...jk}|=k

α1,j1 · · ·αk,jk(bj1 ∧ · · · ∧ bjk)(b1 ∧ · · · ∧ bl)

=
∑

|{j1,...jk}|=k

α1,j1 · · ·αk,jkbj1 · · · bjkb1 · · · bl

= 〈AkBl〉l−k
= Ak cBl,

(4.10.30)

where we also used Theorem 4.5.9.

4.11 Dual

Let Bl ∈ Cl(V ) be an invertible l-blade. The dual on Bl is a function Bl : Cl(V ) →
Cl(V ) defined by

ABl = A cBl
−1. (4.11.1)

If Bl ∈ Cl(V ) is an l-blade, then we will denote

span(A)Bl = span(A)span(Bl). (4.11.2)

A pseudo-scalar of a subspace S ⊂ V is any l-blade Bl ∈ Cl(V ) such that span(Bl) = S.

Theorem 4.11.1 (Dual is linear). The dual is linear.

Proof. The contraction is bilinear, and therefore in particular linear in its first argument.

Remark 4.11.2. If Ak, Bl ∈ Cl(V ) are a k-blade and an invertible l-blade, respectively,
and span(Ak) ⊂ span(Bl), then by Theorem 4.10.14

Ak
Bl = AkBl

−1. (4.11.3)

Theorem 4.11.3 (Span of the dual). Let Ak, Bl ∈ Cl(V ) be an invertible k-blade, and
an l-blade, respectively. Then

span(Ak)
Bl = {y ∈ span(Bl) : y c Ak = 0}. (4.11.4)

Proof. Let x, y ∈ V such that x ∧ Ak = 0, and y c Ak = 0. Then by Theorem 4.8.10,

y c (x ∧ Ak) = (y c x)Ak − x(y c Ak)
= (y · x)Ak

= 0.

(4.11.5)

Since Ak is invertible, x · y = 0. If in addition y ∈ span(Bl), then y ∈ span(Ak)
Bl .
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Theorem 4.11.4 (Span of dual is orthogonal complement of primal span). If
Ak, Bl ∈ Cl(V ) are a k-blade and an invertible l-blade, respectively, then

span
(
Ak
Bl
)

= span(Ak)
Bl . (4.11.6)

Proof. Assume y ∈ span(Ak)
Bl . By Theorem 4.11.3, y ∈ span(Bl), and y cAk = 0. Then

by Theorem 4.10.13

y ∧ (Ak cB−1
l ) = (y c Ak) cB−1

l

= 0.
(4.11.7)

Therefore y ∈ span
(
Ak
Bl
)
. Assume y ∈ span

(
Ak
Bl
)
. Then y ∈ span(Bl). By Theorem

4.10.13 and Theorem 4.10.14,

y ∧ (Ak cB−1
l ) = (y c Ak) cB−1

l

= (y c Ak)B−1
l

= 0.

(4.11.8)

Since Bl is invertible, y c Ak = 0. Therefore y ∈ span
(
Ak
Bl
)
.

Theorem 4.11.5 (Inverse of the dual). If Ak ∈ Cl(V ) is a k-blade, and Bl ∈ Cl(V )
is an invertible l-blade such that span(Ak) ⊂ span(Bl), then(

Ak
Bl
)B−1

l = Ak =
(
Ak
B−1

l

)Bl

. (4.11.9)

Proof. By Theorem 4.10.13, and Theorem 4.9.4,(
Ak
Bl
)B−1

l =
(
Ak cB−1

l

)
cBl

= Ak ∧
(
B−1
l cBl

)
= Ak

= Ak ∧
(
Bl cB−1

l

)
= (Ak cBl) cB−1

l

=
(
Ak
B−1

l

)Bl

.

(4.11.10)

Example 4.11.6. Let u, v ∈ V be invertible vectors in Cl(V ), with u · v = 0, and
B2 = u∧ v. Let a = αu+ βv ∈ span(B2) = S, for some α, β ∈ R. The dual of a on B2 is
given by

aB2 = a cB−1
2

= a c (u ∧ v)−1

= a c (uv)−1

= a c (v−1u−1)

= a c (v−1 ∧ u−1)

= (a · v−1)u− (a · u−1)v

= βu− αv,

(4.11.11)
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where we used Theorem 4.9.3. Now aB2 ∈ S, and aB2 · a = 0. Let A2 = αB2. The dual
of A2 on B2 is given by

A2
B2 = A2 cB−1

2

= (αB2) cB−1
2

= αB2 cB−1
2

= α.

(4.11.12)

The dual of α ∈ R on B2 is given by

αB2 = α cB−1
2

= αB−1
2 .

(4.11.13)

In general, we conclude that if Ak ∈ Cl(V ) is a k-blade such that span(Ak) ⊂ S, then
Ak
B2 has span(Ak)

S ⊂ S, and a well-defined orientation and magnitude.

4.12 Commutator product

The commutator product is a function × : Cl(V )2 → Cl(V ) defined by

A×B =
1

2
(AB −BA). (4.12.1)

Remark 4.12.1. The commutator product of A ∈ Cl(V ) and B ∈ Cl(V ) is zero if and
only if A and B commute with respect to the geometric product. This explains the name.

Theorem 4.12.2 (Commutator product is bilinear). The commutator product is
bilinear.

Proof. The geometric product is bilinear.

Theorem 4.12.3 (Commutator product anti-commutes). Let A,B ∈ Cl(V ). Then

A×B = −B × A. (4.12.2)

Proof.

2(A×B) = AB −BA
= −(BA− AB)

= −2(B × A).

(4.12.3)

Theorem 4.12.4 (Jacobi identity for the commutator product). Let A,B,C ∈
Cl(V ). Then

A× (B × C) +B × (C × A) + C × (A×B) = 0. (4.12.4)
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Proof.

4(A× (B × C)) = ABC − ACB −BCA+ CBA

4(B × (C × A)) = BCA−BAC − CAB + ACB

4(C × (A×B)) = CAB − CBA− ABC +BAC.

(4.12.5)

Adding these equations together proves the claim.

Remark 4.12.5. The commutator product is not associative, but instead satisfies the
Jacobi identity, as given in Theorem 4.12.4.

Theorem 4.12.6 (Commutator product over a geometric product). Let A ∈
Cl(V ), and {B1, . . . , Bk} ⊂ Cl(V ). Then

A× (B1 · · ·Bk) =
k∑
i=1

B1 · · ·Bi−1(A×Bi)Bi+1 · · ·Bk

(B1 · · ·Bk)× A =
k∑
i=1

B1 · · ·Bi−1(Bi × A)Bi+1 · · ·Bk.

(4.12.6)

Proof. The result holds trivially for k = 1. Assume the result holds for k − 1, where
k > 1. Then by induction

2(A× (B1 · · ·Bk)) = A(B1 · · ·Bk)− (B1 · · ·Bk)A

= [A(B1 · · ·Bk−1)Bk − (B1 · · ·Bk−1)ABk] + [(B1 · · ·Bk−1)ABk − (B1 · · ·Bk−1)BkA]

= 2(A× (B1 · · ·Bk−1))Bk + 2(B1 · · ·Bk−1)(A×Bk)

= 2

[
k−1∑
i=1

B1 · · ·Bi−1(A×Bi)Bi+1 · · ·Bk−1Bk

]
+ 2(B1 · · ·Bk−1)(A×Bk)

= 2
k∑
i=1

B1 · · ·Bi−1(A×Bi)Bi+1 · · ·Bk.

(4.12.7)

The latter claim follows from the skew-symmetry of the commutator product.

Theorem 4.12.7. Let a ∈ V , and B ∈ Cl(V ). Then

a×B = a cB+ + a ∧B−. (4.12.8)

4.13 Orthogonality

Let B = {e1, . . . , en} ⊂ V , and I = {i1, . . . , ik} ⊂ [1, n], where 0 ≤ k ≤ n, and 1 ≤ i1 <
· · · < ik ≤ n. Then eI := ei1 · · · eik is called an ordered k-versor in B.

Remark 4.13.1. The ordered k-versor in B is my own terminology.

Theorem 4.13.2 (Orthogonal non-null set has linearly independent ordered
versors). If B = {b1, . . . , bk} ⊂ V is an orthogonal non-null set, and k ≥ 2, then the
ordered versors in B are linearly independent.
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Proof. First decompose∑
I⊂[1,k]

αIbI =
∑

I⊂[1,k−1]

αIbI +
∑

I⊂[1,k−1]

αI∪{k}bIbk

=
∑

I⊂[1,k−1]

(
αI + αI∪{k}(−1)|I|bk

)
bI .

(4.13.1)

Assume ∑
I⊂[1,k]

αIbI = 0

⇔
∑

I⊂[1,k−1]

(
αI + αI∪{k}(−1)|I|bn

)
bI = 0

(4.13.2)

Multiplying from the left by bnbi, and from the right by bibn
b2i b

2
n
, where i < k, is an invertible

operation which gives

⇔
∑

I⊂[1,k−1]

(
−αI + αI∪{k}(−1)|I|bn

)
bI = 0. (4.13.3)

Therefore, by the sum and difference of the previous equations, we obtain

⇔
∑

I⊂[1,k−1]

αIbI = 0 and

∑
I⊂[1,k−1]

αI∪{k}(−1)|I|bnbI = 0,
(4.13.4)

which, by multiplying the second equation with bn
b2n

from the right gives

⇔
∑

I⊂[1,k−1]

αIbI = 0 and

∑
I⊂[1,k−1]

αI∪{k}bI = 0.
(4.13.5)

Therefore, {bI}I⊂[1,k] ⊂ Cl(V ) is linearly independent if and only if {bI}I⊂[1,k−1] ⊂ Cl(V )
is linearly independent. Since our proof makes use of both bi and bk, the base case is to
prove {b∅, b{1}} ⊂ Cl(V ) linearly independent. Let

α0b0 + α1b1 = 0, (4.13.6)

where we used 0 and 1 instead of ∅ and {1}. Since k ≥ 2, b2 exists. Multiplying Equation
4.13.6 from the left by b2, and then from the right by b2, and summing up, we get α0 = 0,
which implies α1 = 0. Therefore B is linearly independent.

Theorem 4.13.3 (Ordered versors of a singleton set may be linearly indepen-
dent). If {e1} ⊂ V \ {0}, and e1 · e1 ≤ 0, then {1, e1} ⊂ Cl(V ) is linearly independent.
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Proof. Let
α0e0 + α1e1 = 0. (4.13.7)

If α0 = 0, then α1 = 0 by the definition of a vector space, and vice versa; assume both are
non-zero. Then e1 = −α0

α1
e0, and it follows by squaring that e1 · e1 =

α2
0

α2
1
> 0. Therefore,

if e1 · e1 ≤ 0, this is a contradiction, and the result holds.

Remark 4.13.4 (Ordered versors of a singleton set may be linearly dependent).
If {e1} ⊂ V is a basis of V , and e1 · e1 > 0, then {1, e1} ⊂ Cl(V ) needs to be required
linearly independent; it can not be proved as such.

Theorem 4.13.5 (Ordered versors of an orthogonal non-null basis of V is a
basis of Cl(V )). Let B ⊂ V be an orthogonal non-null basis of V . Then the ordered
versors in B form a basis of Cl(V ).

Proof. The B is linearly independent by Theorem 2.3.3. TODO.

Theorem 4.13.6 (Clifford algebra can be implemented on a computer). Clifford
algebra Cl(V )p,q,r is algebra-isomorphic to Cl(Rp,q,r).

Proof. Let {e1, . . . en} ⊂ Rp,q,r be the standard basis, where n = p+ q + r. By Theorem
2.5.2, there exists an orthonormal basis B = {b1, . . . , bn} ⊂ V such that the dot product
· is of the required form on the vectors of B. Let f : Rn → V be a linear function
such that f(ei) = bi (which is then bijective). Then this function can be extended to
an algebra isomorphism φ : Cl(V ) → Cl(Rp,q,r) by requiring linearity, φ|V = f , and
φ(a1 · · · ak) = φ(a1) · · ·φ(ak).

Remark 4.13.7. By Theorem 4.13.6, it may seem that Cl(Rp,q,r) is all you need, and
that everything else is just notation. This is true. However, concentrating on Cl(Rp,q,r)
brings back not only the temptation for coordinate-dependent proofs (since it has an
orthogonal basis for V ), but also for proofs which depend on the specific form of the dot
product. This has the effect of hiding structure in proofs, something which we want to
avoid.

Theorem 4.13.8 (Center of a Clifford algebra). Let In ∈ Cl(V ) be a non-zero n-
blade. Then

Center(Cl(V )) =

{
R, if dim(V ) is even,
{α + βIn : α, β ∈ R}, if dim(V ) is odd,

(4.13.8)

Proof. Let B = {b1, . . . , bn} ⊂ V be an orthogonal basis of V , and A ∈ Center(Cl(V )).
Let I ⊂ [1, n], such that ∅ 6= I 6= [1, n]. Let i ∈ I, and j ∈ [1, n] \ I. Then

bIbibj = (−1)|I|−1bibIbj

= (−1)|I|−1(−1)|I|bibjbI

= −bibjbI .
(4.13.9)

Therefore bI /∈ Center(Cl(V )). Clearly b∅ ∈ Center(Cl(V )). Let J ⊂ [1, n]. Then

b[1,n]bJ = (−1)(|J |−1)|J |+|J |(n−|J |)bJb[1,n]

= (−1)|J |(n−1)bJb[1,n].
(4.13.10)

Thus b[1,n] ∈ Center(Cl(V )) if and only if n is odd.
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4.14 Magnitude

The magnitude in Cl(V ) is a function ‖·‖ : Cl(V )→ R defined by

‖A‖=
√
|A ∗ A|. (4.14.1)

Remark 4.14.1. Sometimes the magnitude is also called the weight. However, this choice
conflicts with another concept in those models of geometry which incorporate the point
at the origin. Following [4], we choose the term magnitude to avoid such confusion.

Theorem 4.14.2 (Norms from bilinear forms). The ‖·‖ is a norm (semi-norm) if
and only if · is positive-definite (positive-semi-definite).

Proof. By Theorem 2.9.8 ‖·‖ is a norm (semi-norm) if and only if the scalar product is
a definite (semi-definite) symmetric bilinear form. By Theorem 4.7.8, the scalar product
∗ is positive-definite (positive-semi-definite) if and only if · is positive-definite (positive-
semi-definite).

Remark 4.14.3. In Rp,q, if p = 1 and q > 0, or p > 0 and q = 1, (e.g. the space-time of
special relativity) the corresponding function

√
|a · a| is sometimes called the Minkowski

norm (not to be confused with the Lp-norms), although this function fails the triangle
inequality. We use the term magnitude instead to avoid confusion.

Theorem 4.14.4 (Orthogonal functions preserve magnitude). Let f : Cl(V ) →
Cl(W ) be orthogonal. Then

‖f(A)‖ = ‖A‖. (4.14.2)

Proof.

‖f(A)‖2 = |f(A) ∗ f(A)|
= |A ∗ A|
= ‖A‖2.

(4.14.3)

Remark 4.14.5. In particular, Theorem 4.14.4 applies to grade involution, reversion,
and conjugation.
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4.15 Exponential and trigonometric functions

Let R be a topological associative unital R-algebra. The exponential, sine, cosine,
hyperbolic sine, and hyperbolic cosine are functions R→ R defined by

eA =
∞∑
i=0

Ai

i!
,

sin(A) =
∞∑
i=0

(−1)i
A2i+1

(2i+ 1)!
,

cos(A) =
∞∑
i=0

(−1)i
A2i

(2i)!
,

sinh(A) =
∞∑
i=0

A2i+1

(2i+ 1)!
,

cosh(A) =
∞∑
i=0

A2i

(2i)!
.

(4.15.1)

Theorem 4.15.1 (Exponential for blades). Let Ak ∈ Cl(V ) be a k-blade. Then

eAk =


cosh(α) + Ak

sinh(α)
α

, if A2
k = α2

1 + Ak, if A2
k = 0

cos(α) + Ak
sin(α)
α
, if A2

k = −α2.

(4.15.2)

Proof. Assume A2
k = α2. Then

eAk =
∞∑
i=0

Aik
i!

=
∞∑
i=0

A2i
k

(2i)!
+
∞∑
i=0

A2i+1
k

(2i+ 1)!

=
∞∑
i=0

α2i

(2i)!
+ Ak

∞∑
i=0

α2i

(2i+ 1)!

= cosh(α) + Ak
sinh(α)

α

(4.15.3)

Assume A2
k = 0. Then

eAk =
∞∑
i=0

Aik
i!

= 1 + A.

(4.15.4)
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Assume A2
k = −α2. Then

eAk =
∞∑
i=0

Aik
i!

=
∞∑
i=0

A2i
k

(2i)!
+
∞∑
i=0

A2i+1
k

(2i+ 1)!

=
∞∑
i=0

(−1)i
α2i

(2i)!
+ Ak

∞∑
i=0

(−1)i
α2i

(2i+ 1)!

= cos(α) + Ak
sin(α)

α

(4.15.5)

Theorem 4.15.2 (Sine for blades). Let Ak ∈ Cl(V ) be a k-blade, α ∈ R, and α 6= 0.
Then

sin(Ak) =


Ak

sin(α)
α
, if A2

k = α2

Ak, if A2
k = 0

Ak
sinh(α)
α

, if A2
k = −α2.

(4.15.6)

Proof. Assume A2
k = α2. Then

sin(Ak) =
∞∑
i=0

(−1)i
A2i+1
k

(2i+ 1)!

= Ak

∞∑
i=0

(−1)i
α2i

(2i+ 1)!

= Ak
sin(α)

α
.

(4.15.7)

Assume A2
k = 0. Then

sin(Ak) =
∞∑
i=0

(−1)i
A2i+1
k

(2i+ 1)!

= Ak.

(4.15.8)

Assume A2
k = −α2. Then

sin(Ak) =
∞∑
i=0

(−1)i
A2i+1
k

(2i+ 1)!

= Ak

∞∑
i=0

α2i

(2i+ 1)!

= Ak
sinh(α)

α
.

(4.15.9)
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Theorem 4.15.3 (Cosine for blades). Let Ak ∈ Cl(V ) be a k-blade, α ∈ R, and α 6= 0.
Then

cos(Ak) =


cos(α), if A2

k = α2

1, if A2
k = 0

cosh(α), if A2
k = −α2.

(4.15.10)

Proof. Assume Ak = α2. Then

cos(Ak) =
∞∑
i=0

(−1)i
A2i
k

(2i)!

=
∞∑
i=0

(−1)i
α2i

(2i)!

= cos(α).

(4.15.11)

Assume Ak = 0. Then

cos(Ak) =
∞∑
i=0

(−1)i
A2i
k

(2i)!

= 1.

(4.15.12)

Assume Ak = −α2. Then

cos(Ak) =
∞∑
i=0

(−1)i
A2i
k

(2i)!

=
∞∑
i=0

α2i

(2i)!

= cosh(α).

(4.15.13)

Theorem 4.15.4 (Hyperbolic cosine for blades). Let Ak ∈ Cl(V ) be a k-blade. Then

cosh(Ak) =


cosh(α), if A2

k = α2

1, if A2
k = 0

cos(α), if A2
k = −α2.

(4.15.14)

Proof. Similarly as in the proof for the cosine.

Theorem 4.15.5 (Hyperbolic sine for blades). Let Ak ∈ Cl(V ) be a k-blade. Then

sinh(Ak) =


Ak

sinh(α)
α

, if A2
k = α2

Ak, if A2
k = 0

Ak
sin(α)
α
, if A2

k = −α2.

(4.15.15)

Proof. Similarly as in the proof for the sine.
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5 Linear transformations
In this section we study the linear transformations of V , extended as outermorphisms
to all of Cl(V ). The orthogonal outermorphisms in Cl(V ) have a particularly powerful
representation as pinors.

5.1 Determinant

The determinant is a function det : Out(V )→ R defined by

det(f) = f(An)A−1
n , (5.1.1)

for any invertible n-blade An ∈ Cl(V ), where n = dim(V ).

Theorem 5.1.1 (Determinant is well-defined). Let f ∈ Out(V ), and An, Bn ∈ Cl(V )
be invertible n-blades. Then

f(An)A−1
n = f(Bn)B−1

n . (5.1.2)

Proof. First, notice that
AnB

−1
n = An cB−1

n ∈ R. (5.1.3)

Then

f(An)A−1
n = f(AnB

−1
n Bn)(AnB

−1
n Bn)−1

= (AnB
−1
n )
[
f(Bn)B−1

n

]
(AnB

−1
n )−1

= f(Bn)B−1
n .

(5.1.4)

Remark 5.1.2 (Determinant is not additive). If f, g ∈ Out(V ), then f+g /∈ Out(V )
by Theorem 2.7.5, and so it may not be deduced that det(f + g) = det(f) +det(g), since
the left term is not defined.

Theorem 5.1.3 (Determinant of a scaled function). Let f ∈ Out(V ), and α ∈ R.
Then

det(αf) = αndet(f). (5.1.5)

Proof. Let An = a1 ∧ · · · ∧ an ∈ Cl(V ), where {a1, . . . , an} ⊂ V . Then

det(αf) = (αf)(An)A−1
n

= (αf)(a1 ∧ · · · ∧ an)A−1
n

= [(αf)(a1) ∧ · · · ∧ (αf)(an)]A−1
n

= [(αf(a1)) ∧ · · · ∧ (αf(an))]A−1
n

= αn[f(a1) ∧ · · · ∧ f(an)]A−1
n

= αnf(a1 ∧ · · · ∧ an)A−1
n

= αnf(An)A−1
n

= αndet(f).

(5.1.6)
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Theorem 5.1.4 (Determinant of the composition). Let f, g ∈ Out(V ). Then

det(f ◦ g) = det(f)det(g). (5.1.7)

Proof.

det(f ◦ g) = (f ◦ g)(An)A−1
n

= f(g(An))A−1
n

= f
(
g(An)A−1

n An
)
A−1
n

= f(det(g)An)A−1
n

=
[
f(An)A−1

n

]
det(g)

= det(f)det(g).

(5.1.8)

5.2 Pinors and unit-versors

A pinor is a an invertible element C ∈ Cl(V ) such that ĈvC−1 ∈ V , for all v ∈ V , and
‖C‖ = 1. The pinor group, and the unit-versor group are groups defined by

Pin(V ) = {C ∈ Cl(V ) : C is a pinor},
Versor1(V ) = {C ∈ Cl(V ) : C is a versor, ‖C‖ = 1},

(5.2.1)

respectively, with the geometric product as the group operation. The pinor transform
along C ∈ Pin(V ) is an algebra automorphism C : Cl(V )→ Cl(V ) defined by

C(v) = ĈvC−1, (5.2.2)

for all v ∈ V . The pinor transform through C ∈ Pin(V ) is an algebra automorphism
C : Cl(V )→ Cl(V ) defined by

C(v) = Ĉv̂C−1, (5.2.3)

for all v ∈ V .

Remark 5.2.1 (Along and through). The terms along and through become under-
standable when we consider reflections later.

Remark 5.2.2 (Versor group). The unit-versor group and the pinor group can be
extended to a larger group by removing the restriction ‖C‖ = 1. The result is the versor
group, also known as the Clifford group, or the Lipschitz group. However, since
scaling a pinor by a non-zero real number does not change the induced pinor transform,
the class of transformations is not extended.

Theorem 5.2.3 (Pinor transforms are orthogonal). Let C ∈ Pin(V ). Then C|V ∈
O(V ), and C|V ∈ O(V ).

Proof. Since C is a vector-preserving algebra homomorphism in Cl(V ), it is orthogonal
by Theorem 4.7.9. Therefore C|V ∈ O(V ). Similarly for C|V .
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Theorem 5.2.4 (Pinor transforms preserve blades). Let C ∈ Pin(V ), and Ak ∈
Cl(V ) be a k-blade. Then C(Ak) and C(Ak) are k-blades.

Proof. Let Ak = a1 · · · ak ∈ Cl(V ), where {a1, . . . , ak} ⊂ V is orthogonal. Since C is
orthogonal by Theorem 5.2.3,

C(ai) · C(aj) = ai · aj. (5.2.4)

Therefore C(Ak) is a k-blade. Similarly for C(Ak).

Theorem 5.2.5 (Pinor transforms preserve grades). Let C ∈ Pin(V ), and A ∈
Cl(V ). Then

C(〈A〉k) = 〈C(A)〉k,
C(〈A〉k) =

〈
C(A)

〉
k
.

(5.2.5)

Proof. Since the pinor transform along a pinor and grade selection are both linear, we
may assume that A is a k-blade. Then C(A) = C(〈A〉k) is a k-blade by Theorem 5.2.4.
Therefore the pinor transform along a pinor preserves the grade. Similarly for the pinor
transform through a pinor.

Theorem 5.2.6 (Pinor transforms preserves all products). Let C ∈ Pin(V ), and
A,B ∈ Cl(V ). Then

C(AB) = C(A)C(B),

C(A ∧B) = C(A) ∧ C(B),

C(A cB) = C(A) c C(B),

C(A ∗B) = C(A) ∗ C(B),

(5.2.6)

and similarly for C.

Proof. The geometric product is preserved by the definition of the pinor transforms. The
rest of the products are defined in terms of the geometric product, linear combinations,
and grade selection. Since linear combinations by definition, and grades are preserved by
Theorem 5.2.5, these products also preserved.

Theorem 5.2.7 (Pinor homomorphism). Let φ : Pin(V ) → O(V ) : φ(C) = C|V .
Then φ is a group homomorphism.

Proof. Let C,D ∈ Pin(V ), and v ∈ V . By the associativity of the geometric product,

φ(CD)(v) = CD(v)

= ĈDv(CD)−1

= Ĉ
(
D̂vD−1

)
C−1

= C
(
D̂vD−1

)
= C(D(v))

= [C ◦D](v)

= [φ(C) ◦ φ(D)](v).

(5.2.7)
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Theorem 5.2.8 (Pinor non-homomorphism). Let ψ : Pin(V ) → O(V ) : ψ(C) =
C|V . Then ψ is not a homomorphism.

Proof. Let v ∈ V . Then ψ(1)(v) = −v, i.e. ψ does not map the identity element in
Pin(V ) to the element in O(V ). Therefore ψ is not a homomorphism.

Theorem 5.2.9 (Kernel of the pinor homomorphism). Let φ : Pin(V ) → O(V ) :
φ(C) = C|V . Then

φ−1(idV ) = {−1,+1}, (5.2.8)

where Bn ∈ Cl(V ) is any unit n-blade.

Proof. Let v ∈ V and C ∈ Pin(V ). Then

C(v) = v

⇔ ĈvC−1 = v

⇔ Ĉv = vC

⇔ vC−Ĉv
2

= 0

⇔ v c C = 0,

and this holds for all v ∈ V . By linearity of the contraction, and by Theorem 4.8.9, it
then holds that

A c C = 〈A〉0 c C, (5.2.9)

for all A ∈ Cl(V ). In particular,

1 = C−1 c C
=
〈
C−1

〉
0
c C

=
〈
C−1

〉
0
C,

(5.2.10)

and therefore C = 〈C−1〉−1
0 ∈ R \ {0}. It follows from ‖C‖ = 1 that C ∈ {−1,+1}.

Theorem 5.2.10 (Unit-versor epimorphism). Let φ : Versor1(V )→ O(V ) : φ(C) =
C|V , Then φ is a group epimorphism.

Proof. Let C = c1 · · · ck be a versor, where {c1, . . . , ck} ⊂ V are invertible, and ‖C‖ = 1.
Then C ∈ Pin(V ) by Theorem 5.2.13, and C|V ∈ O(V ) by Theorem 5.2.3. The φ is a
group homomorphism, since it is a sub-group-restriction of a group homomorphism by
Theorem 5.2.7. The proof of Theorem 5.2.13 shows that the pinor transform along C
is repeated reflection along lines {c1, . . . , ck} (in that order). Then for every f ∈ O(V )
there exists a versor C ∈ Pin(V ) such that C = f by Theorem 3.3.6. Therefore φ is
surjective.

Theorem 5.2.11 (Pinor homomorphism is an epimorphism). Let φ : Pin(V ) →
O(V ) : φ(C) = C|V . Then φ is a group epimorphism.

Proof. The φ is a homomorphism by Theorem 5.2.7. Since Versor1(V ) ⊂ Pin(V ), and
Versor1(V ) is epimorphic to O(V ) by Theorem 5.2.10, φ is an epimorphism.
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Theorem 5.2.12 (Unit vectors are pinors). Let c ∈ V be a vector such that ‖c‖ = 1.
Then c ∈ Pin(V ), and

c(v) = v − 2(c · v)c,

c(v) = 2(c · v)c− v,
(5.2.11)

for all v ∈ V .

Proof. Since ‖c‖ = 1, c is invertible. Then

ĉvc−1 = −(cv)c−1

= −(2(c · v)− vc)c−1

= v − 2(c · v)c ∈ V,
(5.2.12)

and cvc−1 = −ĉvc−1.

Theorem 5.2.13 (Unit versors are pinors).

Versor1(V ) ⊂ Pin(V ) (5.2.13)

Proof. Let v ∈ V , and Ck = c1 · · · ck, where {c1, . . . , ck} ⊂ V are invertible, and ‖Ck‖ = 1.
Then

ĈkvC
−1
k = Ĉk−1ckv(Ck−1ck)

−1

= Ĉk−1

(
ĉkvc

−1
k

)
C−1
k−1.

(5.2.14)

Since ĉkvc−1
k ∈ V by Theorem 5.2.12, ĈkvC−1

k ∈ V by induction. Therefore Ck ∈ Pin(V ).

Theorem 5.2.14 (Kernel of the unit-versor epimorphism). Let φ : Versor1(V )→
O(V ) : φ(C) = C|V . Then

φ−1(idV ) = {−1,+1}. (5.2.15)

Proof. Since Versor1(V ) ⊂ Pin(V ) by Theorem 5.2.13, it follows that φ−1(idV ) ⊂
{−1,+1} by Theorem 5.2.9. Since −1 and +1 are both 0-versors, φ−1(idV ) = {−1,+1}.

Theorem 5.2.15 (Pinors are unit versors).

Pin(V ) = Versor1(V ). (5.2.16)

Proof. Let φ : Pin(V ) → O(V ) : φ(C) = C|V . Then φ is an epimorphism by Theorem
5.2.11. SinceVersor1(V ) ⊂ Pin(V ) by Theorem 5.2.13, φ|Versor1(V ) is an epimorphism
by Theorem 5.2.10. In addition, φ−1(1) = {−1,+1} = (φ|Versor1(V ))−1(1) by Theorem
5.2.14 and Theorem 5.2.9. It then follows that Versor1(V ) = Pin(V ) by Theorem
2.1.3.

Remark 5.2.16. Pinors are either even or odd by Theorem 4.4.9.
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Theorem 5.2.17 (Pinor transforms for an odd pinor). If C ∈ 〈Pin(V )〉−, then

C(A) = CÂC−1,

C(A) = CAC−1,
(5.2.17)

for all A ∈ Cl(V ).

Proof. By linearity, we only need to prove the result for k-blades. Let Ak = a1 · · · ak ∈
Cl(V ), where {a1, . . . , ak} ⊂ V is orthogonal. Then

C(Ak) = C(a1 · · · ak)
= C(a1) · · ·C(ak)

=
(
Ĉa1C

−1
)
· · ·
(
ĈakC

−1
)

=
(
−Ca1C

−1
)
· · ·
(
−CakC−1

)
= (−1)kCa1 · · · akC−1

= CÂkC
−1.

(5.2.18)

Similarly for C.

Theorem 5.2.18 (Pinor transforms for an even pinor). If C ∈ 〈Pin(V )〉+, then

C(A) = CAC−1,

C(A) = CÂC−1,
(5.2.19)

for all A ∈ Cl(V ).

Proof. The proof is similar to that of Theorem 5.2.17.

Theorem 5.2.19 (Determinants of pinor transforms). Let C ∈ Pin(V ). Then

det(C|V ) =

{
+1, if C ∈ 〈Pin(V )〉+,
−1, if C ∈ 〈Pin(V )〉−.

det
(
C|V

)
=


+1, if C ∈ 〈Pin(V )〉+,
+1, if C ∈ 〈Pin(V )〉−, and dim(V ) is odd,
−1, if C ∈ 〈Pin(V )〉−, and dim(V ) is even.

(5.2.20)

Proof. We may write C = c1 · · · ck, where {c1, . . . , ck} ⊂ V are invertible unit vectors, by
Theorem 5.2.15. Then

det(C|V ) = det
(
c1 · · · ck|V

)
= det

(
c1|V ◦ · · · ◦ ck|V

)
= det

(
c1|V

)
· · · det

(
ck|V

)
= (−1)k.

(5.2.21)
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Let Bn ∈ Cl(V ) be any invertible n-blade, where n = dim(V ). Then

det
(
C|V

)
= det

(
C
)

= C(Bn)B−1
n

=
(
CBnC

−1
)
B−1
n

= (−1)kĈ
(
BnC

−1B−1
n

)
= (−1)k(−1)knĈĈ−1

= (−1)k(n+1),

(5.2.22)

Theorem 5.2.20 (Pinors have a unit pinor norm). Let C ∈ Pin(V ). Then

C̃C = CC̃ ∈ {−1,+1},
CC = CC ∈ {−1,+1}.

(5.2.23)

Proof. By conjugation,

ĈvC−1 = C−1vĈ

= −C−1
vC̃

= −ĈvC−1,

(5.2.24)

where the last step is because ĈvC−1 ∈ V . Now

v = CĈvC−1C̃−1

=
̂̃
CCv

(
C̃C
)−1

.
(5.2.25)

Therefore C̃C ∈ {−1,+1} by Theorem 5.2.9, and CC̃ = C̃C̃ = C̃C. Similarly, but using
reversion instead, one shows that CC = CC ∈ {−1,+1}.

Theorem 5.2.21 (Scalar product preserves the geometric product of pinors).
Let A,B ∈ Pin(V ). Then

(AB) ∗ (AB) = (A ∗ A)(B ∗B). (5.2.26)

Proof.

(AB) ∗ (AB) =
〈
ABÃB

〉
0

=
〈
ABB̃Ã

〉
0

=
(
AÃ
)(
BB̃

)
=
〈
AÃ
〉

0

〈
BB̃

〉
0

= (A ∗ A)(B ∗B),

(5.2.27)

where we used Theorem 4.4.13, and Theorem 5.2.20.
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5.3 Spinors and rotors

The spinor group, and the rotor group, are sub-groups of the pinor group defined by

Spin(V ) = 〈Pin(V )〉+,
Rotor(V ) = {C ∈ Spin(V ) : C ∗ C = 1},

(5.3.1)

respectively. The corresponding elements are called a spinor, and a rotor, respectively.

Remark 5.3.1 (Naming for pinors). Spinors were named first. According to [1], the
name for pinors was originally a joke due to Jean-Pierre Serre. It stuck into use.

Remark 5.3.2 (Rotors are special spinors). A rotor is also called a special spinor.
In [4], page 106, it is erroneously claimed that not all special spinors are versors. This
contradicts Theorem 5.2.15. The error can be traced to the sentence

From previous considerations, we know that such an equation can obtain for
all x only if λ has a scalar and possibly a pseudoscalar part only.

However, there can be no pseudo-scalar part by Theorem 5.2.9.

Remark 5.3.3 (Rotors are rotations). Rotors are the correct generalization of rota-
tions from definite bilinear spaces to indefinite bilinear spaces.

Theorem 5.3.4 (Spinor transforms are special orthogonal). Let C ∈ Spin(V ).
Then C|V ∈ SO(V ) and C|V ∈ SO(V ).

Proof. It holds that C|V ∈ O(V ) by Theorem 5.2.3. In addition, det(C|V ) = 1 by
Theorem 5.2.19. Therefore C|V ∈ SO(V ). Similarly for C|V .

Theorem 5.3.5 (The spinor group is epimorphic to SO(V )). Let φ : Spin(V ) →
SO(V ) : φ(C) = C|V . Then φ is a group epimorphism.

Proof. Since Spin(V ) ⊂ Pin(V ), φ is a group homomorphism by Theorem 5.2.11. Since
〈Versor1(V )〉+ ⊂ Spin(V ), φ is surjective by Theorem 3.3.6.

Theorem 5.3.6 (Rotor product is proper special orthogonal). Let C ∈ Rotor(V ).
Then C|V ∈ SO+(V ).

Proof. It holds that C|V ∈ SO(V ) by Theorem 5.3.4. TODO.

Theorem 5.3.7 (The rotor group is epimorphic to SO+(V )). Let φ : Spin(V ) →
SO+(V ) : φ(C) = C|V . Then φ is a group epimorphism.

Proof. TODO.
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5.4 Projections

Let Bl ∈ Cl(V ) be an invertible l-blade. The projection on Bl is a function ‖Bl : Cl(V )→
Cl(V ) defined by

A‖Bl =
(
A cB−1

l

)
cBl. (5.4.1)

The rejection from Bl is a function ⊥Bl : Cl(V )→ Cl(V ) defined by

A⊥Bl = A− A‖Bl . (5.4.2)

Remark 5.4.1. Projection on and rejection from a blade Bl ∈ Cl(V ) are independent of
non-zero scaling of Bl. Only the span(Bl) matters.

Remark 5.4.2 (Intuition for the projection). The projection can also be written as
ABl

B−1
l . This gives an intuition for the projection.

Theorem 5.4.3 (Projection on a blade is an outermorphism). Let Bl ∈ Cl(V ) be
an invertible l-blade. Then the projection on Bl is an outermorphism.

Proof. By linearity, we only need to prove the result when A is a k-blade. Let Ak =
a1 ∧ · · · ∧ ak ∈ Cl(V ), where {a1, . . . , ak} ⊂ V . Then

Ak−1
‖Bl ∧ ak‖Bl =

[(
Ak−1 cB−1

l

)
cBl

]
∧
[(
ak cB−1

l

)
cBl

]
=
{[(

Ak−1 cB−1
l

)
cBl

]
c
[
ak cB−1

l

]}
cBl

=
{([(

Ak−1 cB−1
l

)
cBl

]
∧ ak

)
cB−1

l

}
cBl

=
{(
ak ∧

[(
Âk−1 cB−1

l

)
cBl

])
cB−1

l

}
cBl

=
{
ak c

([(
Âk−1 cB−1

l

)
cBl

]
cB−1

l

)}
cBl

=
{
ak c

((
Âk−1 cB−1

l

)
∧
[
Bl cB−1

l

])}
cBl

=
{
ak c

(
Âk−1 cB−1

l

)}
cBl

=
{(
ak ∧ Âk−1

)
cB−1

l

}
cBl

=
(
Ak cB−1

l

)
cBl

= Ak
‖Bl ,

(5.4.3)

where we used Theorem 4.8.9 and Theorem 4.10.13.

5.5 Reflections

A reflection along an invertible l-blade Bl ∈ Cl(V ) is the pinor transform along Bl/‖Bl‖.
A reflection through an invertible l-blade Bl ∈ Cl(V ) is the pinor transform through
Bl/‖Bl‖.

Theorem 5.5.1 (Reflection along a blade for vectors). Let a ∈ V , and Bl ∈ Cl(V )
be an invertible unit l-blade. Then

Bl(a) = −a‖Bl + a⊥Bl . (5.5.1)
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Proof.

Bl(a) = B̂laB
−1
l

=
(
B̂l b a+ B̂l ∧ a

)
B−1
l

= (−a cBl + a ∧Bl)B
−1
l

= (−a cBl)B
−1
l + (a ∧Bl)B

−1
l

= −
(
a cB−1

l

)
cBl + (a ∧Bl)B

−1
l

= −a‖Bl + a⊥Bl ,

(5.5.2)

where we used Theorem 4.8.4, and Theorem 4.10.14

Example 5.5.2 (Intuition for a reflection along a blade). Consider the reflection
of a vector along an invertible blade Bl ∈ Cl(V ) in the following cases. The case l = 0
is called a reflection along a point ; it does not do anything. The case l = 1 is called a
reflection along a line; it negates the single component along the line. The case l = n− 1
is called a reflection along a plane; it negates the n− 1 components along the plane. The
case l = n is called a reflection along a space; it negates all the n components. In the
general case l components along span(Bl) are negated.

Theorem 5.5.3 (Reflection through a blade for vectors). Let a ∈ V , and Bl ∈
Cl(V ) be an invertible unit l-blade. Then

Bl(a) = a‖Bl − a⊥Bl . (5.5.3)

Proof. This is immediate from Theorem 5.5.1.

Example 5.5.4 (Intuition for a reflection through a blade). Consider the reflection
of a vector through an invertible blade Bl ∈ Cl(V ) in the following cases. The case l = 0
is called a reflection through a point ; it negates all the n components orthogonal to the
origin. The case l = 1 is called a reflection through a line; it negates the n−1 components
orthogonal to the line. The case l = n−1 is called a reflection through a plane; it negates
the single component orthogonal to the plane. The case l = n is called a reflection through
a space; it does not do anything. In the general case n− l components in span(Bl)

V are
negated.

Remark 5.5.5 (Generalized projections). Let a ∈ V , and Bl ∈ Cl(V ) be an invertible
unit l-blade. Then the projection on Bl can equivalently be given by

a‖Bl =
1

2

(
a−Bl(a)

)
. (5.5.4)

Since this formula also makes sense when B ∈ Pin(V ), it is natural to ask whether this
generalizes projection in some useful way. The answer is unclear to me; the corresponding
outermorphism does not seem to have a simple form.

Theorem 5.5.6 (The relation between the reflections). Let Bl ∈ Cl(V ) be an
invertible unit l-blade, and In ∈ Cl(V ) an invertible n-blade. Then

Bl(A)In = Bl
In(A),

Bl(A)In = Bl
In(A).

(5.5.5)
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Proof.

Bl(Ak)
In =

(
(−1)klBlAkB

−1
l

)
c I−1

n

= (−1)klBlAkB
−1
l I−1

n

= (−1)klBl

(
I−1
n In

)
Ak(InBl)

−1

= (−1)kl
(
BlI

−1
n

)
InAk(InBl)

−1

(5.5.6)

5.6 Adjoint

Let f : Cl(V )→ Cl(V ) be an outermorphism. The adjoint of f is a function f̃ : Cl(V )→
Cl(V ) such that

f(A) ∗B = A ∗ f̃(B), (5.6.1)

for all A,B ∈ Cl(V ).

Remark 5.6.1. Since ∗ is non-degenerate, the adjoint is well-defined.

Theorem 5.6.2. Let f ∈ Out(V ). Then f̃ is linear.

Proof. Let A,B,X ∈ Cl(V ), and α, β ∈ R. By the definition of the adjoint, and the
bilinearity of the scalar product,

X ∗ f̃(αA+ βB) = f(X) ∗ (αA+ βB)

= α(f(X) ∗ A) + β(f(X) ∗B)

= α(X ∗ f̃(A)) + β(X ∗ f̃(B))

= X ∗ (αf̃(A) + βf̃(B)).

(5.6.2)

Since ∗ is non-degenerate, the result follows.

Theorem 5.6.3. Let f ∈ Out(V ). Then f̃ ∈ Out(V ).

Proof. By linearity we only need to prove the result for k-blades. The f̃ is linear by
Theorem 5.6.2. Let Ak = a1 ∧ · · · ∧ ak ∈ Cl(V ) be a k-blade, and let X ∈ Cl(V ). Then

X ∗ f̃(Ak) = f(X) ∗ (Ak−1 ∧ ak)
= (Ak−1 ∧ ak) ∗ f(X)

= (Ak−1 ∧ ak) c f(X)

= Ak−1 c (ak c f(X))

(5.6.3)

TODO. Since ∗ is non-degenerate, the result follows.

6 Geometric applications
In this section we derive solutions to problems traditionally approached with various kinds
of machinery in linear algebra. We shall see that much of that machinery is subsumed by
geometric algebra, providing easily-modifiable formulae with powerful generalizations.
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6.1 Cramer’s rule

Theorem 6.1.1 (Coordinates of a vector on a basis). Let B = {b1, . . . , bk} ⊂ V be
a linearly independent set of invertible vectors, Bk = b1∧· · ·∧bk, and v ∈ span(B). Then

v =
k∑
i=1

αibi, (6.1.1)

where
αi = (b1 ∧ · · · ∧ bi−1 ∧ v ∧ bi+1 ∧ · · · ∧ bk)B−1

k . (6.1.2)

Proof. Multiply, with the exterior product, Equation 6.1.1 on both sides from the left by
b1∧· · ·∧ bi−1 and from the right by bi+1∧· · ·∧ bk. The result follows from the alternation
property of the exterior product.

6.2 Gram-Schmidt orthogonalization

Let A = {a1, . . . , ak} ⊂ V be a set of invertible linearly independent vectors. The Gram-
Schmidt orthogonalization of A is a set ⊥(A) = {b1, . . . , bk} ⊂ V , defined by b1 = a1,
and

bi = (−1)i−1(ai · ai)(b1 ∧ · · · ∧ bi−1) c (b1 ∧ · · · ∧ bi−1 ∧ ai)−1, (6.2.1)

for i ∈ [2, k].

Remark 6.2.1. We gave the Gram-Schmidt orthogonalization in a form which uses the
previously computed vectors bi instead of the original vectors ai. While mathematically
equivalent, using the bi is numerically more stable. This algorithm is often called modified
Gram-Schmidt orthogonalization.

Theorem 6.2.2. If A = {a1, . . . , ak} ⊂ V is a set of invertible linearly independent
vectors, then ⊥(A) = {b1, . . . , bk} is orthogonal.

Theorem 6.2.3. If A = {a1, . . . , ak} ⊂ V is an orthogonal set of invertible linearly
independent vectors, then ⊥(A) = A.

Proof. The result holds by definition for b1 = a1. Assume i > 1. Then

bi = (−1)i−1(ai · ai)(b1 ∧ · · · ∧ bi−1) c (b1 ∧ · · · ∧ bi−1 ∧ ai)−1

= (b1 ∧ · · · ∧ bi−1) c (a−1
i ∧ b1 ∧ · · · ∧ bi−1)−1

= (b1 · · · bi−1)(a−1
i b1 · · · bi−1)−1

= (b1 · · · bi−1)(b1 · · · bi−1)−1ai

= ai,

(6.2.2)

for i ∈ [2, k], where we used Theorems 4.5.9 and 4.10.14.
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6.3 Alternating forms and determinant

Let V andW be vector-spaces over the same field F . A k-map from V toW is a function
fk : V k → W . A k-map is called multi-linear, if it is linear in each of its arguments,
and alternating if it equals zero whenever two of its arguments are equal. A linear
combination of two k-maps fk and gk is defined by

(αfk + βgk)(a1, . . . , ak) = αfk(a1, . . . , ak) + βgk(a1, . . . , ak). (6.3.1)

A k-form on V is a multi-linear k-map from V to F . The set of alternating forms on V
is denoted by Alt(V ), and the set of alternating k-forms on V is denoted by Alt(V )k ⊂
Alt(V ). Let I = {i1, . . . , ik} ⊂ N be a set such that i1 < · · · < ik, and {ai}i∈I ⊂ V a
set of vectors indexed by I. Then we denote aI = (ai1 , . . . , aik) ∈ V k. The exterior
product of alternating forms is a bilinear function ∧ : Alt(V )2 → Alt(V ) such that

(fk ∧ gl)(a[1,k+l]) =
∑

(I,J)∈Sh(k,l)

sgn(I, J)fk(aI)gk(aJ), (6.3.2)

for all fk ∈ Alt(V )k and gl ∈ Alt(V )l, where the set of (k, l)-shuffles is defined by

Sh(k, l) = {(I, J) ∈ σ([1, k + l]) :I ∈ Nk, J ∈ Nl,

1 ≤ I1 < · · · < Ik ≤ k + l, and
1 ≤ J1 < · · · < Jl ≤ k + l}.

(6.3.3)

Let Alt(V ) be the set of alternating forms on V , and [·]k : Cl(V ) → Alt(V ), called the
k-form epimorphism, such that

[A]k(a1, . . . , ak) = Ã ∗ (a1 ∧ · · · ∧ ak). (6.3.4)

Theorem 6.3.1. Let A,B ∈ Cl(V ). Then

[A]k ∧ [B]l = [A ∧B]k+l. (6.3.5)

6.4 Reciprocal bases

Let B = {b1, . . . , bk} ⊂ V be linearly independent, and Bk = b1 ∧ · · · ∧ bk ∈ Cl(V ) an
invertible k-blade. The reciprocal {b1, . . . , bk} ⊂ V of B is defined by

bi = (−1)i−1(b1 ∧ · · · ∧ b̌i ∧ · · · ∧ bk)
Bk

,

for all i ∈ [1, k], where the check-mark denotes a missing factor.

Theorem 6.4.1. Let B = {b1, . . . , bk} ⊂ V be linearly independent, Bk = b1 ∧ · · · ∧ bk ∈
Cl(V ) an invertible k-blade, and {b1, . . . , bk} ⊂ V the reciprocal of B. Then

bi · bj = δ(i, j), (6.4.1)

for all i, j ∈ [1, k].
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Proof.

bi · bj = bi · (−1)j−1(b1 ∧ · · · ∧ b̌j ∧ · · · ∧ bk)
Bk

= (−1)j−1bi c
[
(b1 ∧ · · · ∧ b̌j ∧ · · · ∧ bk) cB−1

k

]
= (−1)j−1(bi ∧ b1 ∧ · · · ∧ b̌j ∧ · · · ∧ bk) cB−1

k

= δ(i, j)(b1 ∧ · · · ∧ bk) cB−1
k

= δ(i, j)Bk cB−1
k

= δ(i, j),

(6.4.2)

where we used Theorem 4.9.3, and Theorem 4.9.4.
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