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Abstract

In computer science, algorithm analysis is concerned with the correctness and
complexity of algorithms. Correctness analysis is about verifying that an
algorithm solves the problem it is claimed to solve, and complexity analysis is
about counting the amount of resources an algorithm takes to run in an abstract
machine. This paper is concerned with complexity analysis.

The amount of resources consumed by an algorithm is captured by a cost
function which maps each input of the algorithm to a non-negative real number.
The cost functions are ordered by an order-relation �, which makes it possible
to simplify, and to compare cost functions. A cost function can be simplified
by replacing it with an equivalent, simpler cost function. The smaller the cost
function is according to �, the better the algorithm — at least for the measured
resource.

The O-notation O(f) is the set of functions g which satisfy g � f . It
contains the same simplification and comparison tools in a slightly different,
but equivalent form.

How should the O-notation be defined? By the above, we may ask an
equivalent question: how should the order relation � be defined? We provide 8
intuitive properties for �, and then show that there is exactly one definition of
� which satisfies these properties: linear dominance.

We show that Master theorems hold under linear dominance, define the O-
mappings as a general tool for manipulating the O-notation, and abstract the
existing definitions of the O-notation under local linear dominance.
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Chapter 1

Introduction to the paper

Suppose we want to sort playing cards into increasing order. The kind of cards
does not matter, only that for any two cards A and B, either A comes before B,
denoted by A < B, or B comes before A, denoted by B < A. One way to sort
the deck is by the following insertion sort, which is visualized in Figure 1.1.

1. If there are no cards left in the deck, we are done.

2. Otherwise, we pick the top-most card A from the deck.

3. Starting from the right end of the cards on the table, we compare A
to each card B on the table, until A < B for the first time.

4. If there is no such card B, we place A on the table as the right-most
card, and start again from step 1.

5. Otherwise, we place A on the table immediately left of B, and start
again from step 1.

How many comparisons between cards do we have to perform to sort a
given deck with n cards? In the best case, the deck is already sorted in
increasing order, requiring us to perform only n− 1 comparisons. In the worst
case, the deck is already sorted in decreasing order, requiring us to perform
1 + 2 + 3 + ...+ (n− 1) = (n− 1)n/2 comparisons. Therefore, sorting a deck
with n cards using insertion sort always requires something between n− 1 and
(n− 1)n/2 comparisons.

Another way to sort the deck is by the following merge sort.
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Figure 1.1: Sorting 5 playing cards with insertion sort. The cards on the table
are visualized on the left, while the cards in the deck are visualized on the right.
During sorting, 7 comparisons are made between cards.

1. We place all the cards in a row on the table. Every card A is
considered to form a sequence (A) consisting of a single card.

2. If there is at most one card-sequence on the table, we are done.

3. For each two successive card-sequences, A and B, we combine A
and B into a single sequence C by repeatedly picking the smallest of
the cards at the left end of A and the left end of B (e.g., (3, 7) and
(5, 9) becomes (3, 5, 7, 9)). If one of the sequences runs out before the
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Figure 1.2: Sorting 8 playing cards with merge sort. During sorting, 17
comparisons are made between cards; the maximum possible for 8 cards. The
merging procedure is repeated log2(8) = 3 times.

other, we place the remaining sequence at the right end of C without
performing additional comparisons.

4. We start again from step 2.

How many comparisons between cards do we now have to perform to sort
a given deck with n cards? Suppose n is a power of two, so that n = 2d for
some integer d. In the best case, the cards on the table are already sorted,
and we need to perform (n/2) log2(n) comparisons to combine the sequences

3
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Sorting procedure / n 64 256 1024 4096
Insertion sort — worst case 2016 32640 523776 8386560
Merge sort — worst case 321 1793 9217 45057
Insertion sort — best case 63 255 1023 4095
Merge sort — best case 192 1024 5120 24576

Table 1.1: Number of comparisons needed to sort n cards by using either
insertion sort, or merge sort. Merge sort scales better than insertion sort in the
worst case.

x f(x)
f

x F(x)
F

Figure 1.3: A black-box view of an algorithm. The algorithm, visualized here
as a gray box, transforms an input x from an input-set X to an output F (x)
from an output-set Y . The transform is captured by a mapping F : X → Y .
The abstract machine executing the algorithm consumes resources at each step
of the algorithm. The cost function, for given input and resource, is captured
by a mapping f : X → R≥0.

into a single deck. In the worst case, we need to perform n(log2(n) − 1) + 1
comparisons. A deck which attains this bound for n = 8 is given in Figure 1.2.
Table 1.1 tabulates the number of comparisons required, in the worst case and
in the best case, as a function of the number n of cards in the deck for both
ways of sorting. It can be seen that merge sort scales better than insertion sort
in the worst case. Note however, that there are decks — especially those which
are sorted or almost sorted — for which insertion sort performs less comparisons
than merge sort.
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1.1 Algorithms and their analysis

Such step-wise procedures are called algorithms. A run of an algorithm is
a finite sequence of atomic operations — in the above, picking a card from
the deck, comparing two cards, and placing a card on the table. The atomic
operations are performed one by one by an abstract machine — in the above
the person sorting the cards. The abstract machine, running the algorithm,
transforms a given input — such as a deck of cards — into output — such as
the sorted input deck. This correspondence is captured by a function F , as
visualized in Figure 1.3. The kind of algorithms that can be written depends
on which atomic operations the abstract machine supports.

To each atomic operation, we associate a cost in resources — in the above
one unit of resource to the task of comparing two cards. We then analyze the
algorithm for the amount of resources that it uses. The result of the analysis
is a cost function f which associates each possible input to the resource-cost.
However, as for insertion sort and merge sort, the function f can be too hard
to study directly — or to get an intuition to.

To make the analysis tractable, the input is grouped by some simpler
property — in the above by the number of cards in the deck. The value of the
property shared by a group is called the label of the group. Since a group may
contain more than one input, we must come up with a way to summarize the
costs inside each group.

Such summaries include best case analysis and worst case analysis — in
the above providing us with the lower and upper bounds, respectively, for the
number of comparisons required to sort a deck with a given number of cards. To
analyze worst-case behavior under a given grouping, we pick from each group a
representative input which triggers the worst resource-cost. Conceptually, we
then analyze a surrogate algorithm, which takes a group-label as an input, maps
it to the corresponding group-representative, and feeds the representative as an
input to the actual algorithm.

Another common summary is average case analysis, where we assume a
random distribution for the input, and then analyse the mean of the resulting
random cost function.

Grouping is often required to make analysis tractable. However, too rough
a grouping loses detail without aiding intuition. Sometimes grouping is not
necessary at all — as when the input-set is Z.
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1.2 Simplified analysis by O-notation

Above we analyzed two algorithms for sorting playing cards, and noticed that
merge sort is superior to insertion sort, at least when the measured resource is
the number of performed comparisons in the worst case, and the deck contains
at least 4 cards. This difference is fundamental, in the sense that the ratio by
which merge sort beats insertion sort — in the worst case — keeps growing.
For example, while for n = 64 the ratio is 6.3, for n = 4096 the ratio is already
186. Such algorithmic efficiency is often much more important than the speed
at which a given abstract machine executes the atomic operations.

Our analyses above were based on careful counting of the comparisons, with
an aim of capturing the worst case and best case bounds exactly. Such analysis
is only possible with an algorithm that is sufficiently simple. Numerical analysis
is a field whose algorithms (e.g., matrix QR-decomposition) have traditionally
been analyzed in this way.

With a complex algorithm, a closed form expression for the cost function
may not exist, or otherwise be too complex for a human to make sense of —
not to mention the ingenuity needed to solve the combinatorial problems that
occur when deriving those expressions.

The way out of these problems is to declare that we are not interested in
small differences, and to simplify them out as they occur. For example, the
relative error of approximating the worst-case resource consumption (n− 1)n/2
of insertion sort by n2/2 is only 1/10 for n = 11, and decreases to zero as n
grows.

In addition, we declare that we are only interested in algorithmic efficiency,
and so are ready to ignore the speed of the abstract machine up to a constant.
It does not matter whether some other machine is 2 times faster to perform the
algorithm. What matters is how the algorithm scales — does it scale like n2 or
like n log2(n)?

We then say that insertion sort takes about n2 comparisons, because this is
simple, and does not fundamentally differ from the exact count. However, here
we must be careful. Since we aim to simplify expressions whenever possible, we
need a guarantee that computing with the simplified expressions provides the
same answer as first computing the exact cost function, and then simplifying it.
We need simplification rules for algorithmic cost functions.

The simplification rules are formalized by a tool called O-notation. Intu-
itively, whenever we want to simplify, we surround the expression with an O, as
in O((n− 1)n/2), and then use whatever simplification rules the O-notation
provides. With proper assumptions on the domain of n, we can then show that

6
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O((n− 1)n/2) = O((n− 1)n)
= O

(
n2 − n

)
= O

(
n2). (1.1)

The notation O(f), where f is a real-valued function, stands for the set of
real-valued functions which scale at least as well as f . Having the same O-set
divides the functions into equivalence classes — in the above, we then say that
the functions (n− 1)n/2 and n2 are equivalent.

However, simplification is not the whole story. In addition, the O-notation
must induce an order, so that the cost functions can be compared, and the order
must respect the structure that is present in algorithms: looping, branching,
and composition.

How do we define such an O-notation, and which rules do we need?

1.3 Definitions of O-notation

Here are some of the proposed definitions1 for an O-notation in algorithm
analysis.

Definition 1.2 (Asymptotic linear dominance). Asymptotic linear
dominance O is defined by g ∈ OX(f) if and only if

∃c ∈ R>0,∃y ∈ Rd :
(
g|X≥y

)
≤ c
(
f |X≥y

)
, (1.3)

for all f, g ∈ RX , and all X ∈ U , where U =
⋃
d∈N>0 P

(
Rd
)
.

Note 1.4. This definition is given in [1] in the univariate form on N, and
generalized to N2 in a later exercise [1, page 50]. �

Definition 1.5 (Coasymptotic linear dominance). Coasymptotic lin-

1R>0 is the set of positive real numbers, P(X) is the set of subsets of X, (f |A) is the
restriction of a function f to a set A, f ≤ g for functions f and g means ∀x ∈ X : f(x) ≤ g(x),
and RX is the set of functions from X to R≥0. See Appendix A for more notation.

7
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ear dominance O is defined by g ∈ OX(f) if and only if

∃c ∈ R>0,∃y ∈ Rd :
(
g|
(
X \X<y

))
≤ c
(
f |
(
X \X<y

))
. (1.6)

for all f, g ∈ RX , and all X ∈ U , where U =
⋃
d∈N>0 P

(
Rd
)
.

Note 1.7. This definition is given in [2] in the univariate form on N, and
generalized to N2 in a later exercise [2, page 53]. �

Definition 1.8 (Cofinite linear dominance). Cofinite linear domi-
nance O is defined by g ∈ OX(f) if and only ifa

∃c ∈ R>0,∃A ∈ P(X) : (g|A) ≤ c(f |A), (1.9)

for all f, g ∈ RX , and all sets X.
aP(X) = {A ∈ P(X) : |X \A| <∞}.

Note 1.10 (Symbol shapes). The drawing inside a given version of O
above mimics the shape of its restriction sets in R2. �

Definition 1.11 (Full linear dominance). Full linear dominance O is
defined by g ∈ OX(f) if and only if

∃c ∈ R>0 : g ≤ cf, (1.12)

for all f, g ∈ RX , and all X ∈ U , where U is the class of all sets.

Note 1.13 (Symbol shape). The drawing inside O mimics a line. �

Note 1.14 (Linear dominance). We will often shorten full linear domi-
nance to linear dominance. �

8
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Definition 1.15 (Affine dominance). Affine dominance O is defined
by g ∈ OX(f) if and only if

∃c ∈ R>0 : g ≤ cf + c, (1.16)

for all f, g ∈ RX , and all X ∈ U , where U is the class of all sets.

Note 1.17 (Symbol shape). The drawing inside O mimics the plus
operator. �

Definition 1.18 (Related notations). Given an O-notation, we define
the related notations ΩX, ωX, oX,ΘX as follows:

g ∈ ΩX(f) ⇐⇒ f ∈ OX(g),
g ∈ ωX(f) ⇐⇒ g 6∈ OX(f) and f ∈ OX(g),
g ∈ oX(f) ⇐⇒ g ∈ OX(f) and f 6∈ OX(g),
g ∈ ΘX(f) ⇐⇒ g ∈ OX(f) and f ∈ OX(g).

(1.19)

Note 1.20 (Equivalence from equality of O-sets). The expression
OX(f) = OX(g) is equivalent to f ∈ ΘX(g); equality between O-sets can
be used to establish the equivalence of functions. This is also true for
ΩX(f) = ΩX(g) and ΘX(f) = ΘX(g). �

Note 1.21 (Study of the O-notation suffices). It suffices to study the
O-notation, since the related notations are completely determined by the
O-notation. �

We will show linear dominance O to be the correct definition of O-notation
for algorithm analysis.

1.4 Example analyses

In the following, we provide some example analyses of algorithms, and demon-
strate why most of the definitions of O-notation in the previous section — except
linear dominance — are not suitable for algorithm analysis.

9
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Note 1.22 (Function from an expression). We will often denote a
function in the parameter of OX with an expression, as in ON(n), where
we actually mean ON(f), with f ∈ RN such that f(n) = n.

When the expression contains multiple symbols, as in ON2
(
n2m

)
, we

interpret the symbols to be assigned to the input-tuple in alphabetical order,
as in ON2

(
(m,n) 7→ n2m

)
. This is to acknowledge that (m,n) 7→ n2m and

(n,m) 7→ n2m are different functions. �

Note 1.23 (A cost model for examples). In the following examples,
each addition operation x+ y costs one unit, while other operations cost
nothing. �

Algorithm 1 An algorithm which takes as input (m,n) ∈ N2, and outputs n,
if m = 0, and 0 otherwise.
1: procedure computeOnPlane(m,n)
2: j := 0
3: if m = 0 then
4: for i ∈ [0, n[N do
5: j := j + 1
6: end for
7: end if
8: return j
9: end procedure

Algorithm 2 An algorithm which takes as input n ∈ N, and returns n.
1: procedure mapNaturalsToPlane(n)
2: return computeOnPlane(0, n)
3: end procedure

Example 1.24 (Algorithm on N2). Consider Algorithm 1, which takes
as input (m,n) ∈ N2. The cost function for this algorithm is f ∈ RN2 such

10
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that

f(m,n) =
{
n, m = 0,
0, m > 0,

(1.25)

We can show that f ∈ ΘN2(0). 4

Example 1.26 (Calling algorithm on N2). Consider Algorithm 2,
which takes as input n ∈ N, and outputs the result of Algorithm 1 at
(0, n). The cost function for this algorithm is g ∈ RN such that

g(n) = n. (1.27)

We can show that g ∈ ΘN(n). Therefore, by calling an algorithm which
is ΘN2(0), we get an algorithm which is ΘN(n). This shows that O is not
suitable for a definition of O-notation in algorithm analysis. 4

Algorithm 3 An algorithm which takes as input z ∈ Z, and returns max(−z, 0).
1: procedure computeOnIntegers(z)
2: j := 0
3: if z < 0 then
4: for i ∈ [0,−z[N do
5: j := j + 1
6: end for
7: end if
8: return j
9: end procedure

Algorithm 4 An algorithm which takes as input n ∈ N, and returns max(n, 0).
1: procedure mapNaturalsToIntegers(n)
2: return computeOnIntegers(−n)
3: end procedure

Example 1.28 (Algorithm on Z). Consider Algorithm 3, which takes
as input z ∈ Z and returns max(−z, 0). The cost function of this algorithm

11
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is f ∈ RZ such that
f(z) = max(−z, 0). (1.29)

We can show that f ∈ ΘZ(0). 4

Example 1.30 (Calling algorithm on Z). Consider Algorithm 4, which
takes as input n ∈ N, and outputs the result of Algorithm 3 at −n. The
cost function of this algorithm is g ∈ RN such that

g(n) = n. (1.31)

We can show that g ∈ ΘN(n). Therefore, by calling an algorithm which
is ΘZ(0), we get an algorithm which is ΘN(n). This shows that O is not
suitable for a definition of O-notation in algorithm analysis. 4

Algorithm 5 An algorithm which takes as input n ∈ N and evaluates a
sub-algorithm n times at 0.
1: procedure G(n)
2: for i ∈ [0, n[N do
3: F(0)
4: end for
5: end procedure

Example 1.32 (Course-exercise). Consider Algorithm 5, which takes
as input n ∈ N and calls a sub-algorithm F at 0 repeatedly n times. Denote
the cost function of F by f ∈ RN, and the cost function of G by g ∈ RN.
Suppose f ∈ ΘN(1). What is ΘN(g)?

The given information is not sufficient to solve this problem. In partic-
ular, let f1, f2 ∈ RN be such that f1(n) = 1, and

f2(n) =
{

0, n = 0,
1, n > 0.

(1.33)

12



Chapter 1. Introduction to the paper

Then f1, f2 ∈ ΘN(1), but

g1 ∈ ΘN(n),
g2 ∈ ΘN(0),

ΘN(n) ∩ΘN(0) = ∅.
(1.34)

This shows that O is not suitable for a definition of O-notation in algorithm
analysis.

There is a fundamental difference between consuming resources (f(0) >
0) and not consuming resources (f(0) = 0), which O ignores here.

In contrast, g ∈ ΘN(n) provided f ∈ ΘN(1), as expected. 4

Algorithm 6 An algorithm which takes as input x ∈ R>0 and returns
max(d− log2(x)e, 0) ∈ N.
1: procedure doublesToOne(x)
2: k ← 0
3: y ← x
4: while y < 1 do
5: y ← 2y
6: k ← k + 1
7: end while
8: return k
9: end procedure

Algorithm 7 An algorithm which takes as input n ∈ N, and returns n.
1: procedure identity(n)
2: return doublesToOne(2−n)
3: end procedure

Example 1.35 (Algorithm on R>0). Consider Algorithm 6, which takes
as input x ∈ R>0 and outputs max(d− log2(x)e, 0) ∈ N; this is the number
of times that x must be doubled to grow ≥ 1. The cost function of this
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algorithm is f ∈ RR>0 such that

f(x) = max(d− log2(x)e, 0). (1.36)

We can show that f ∈ ΘR>0(0). 4

Example 1.37 (Calling an algorithm on R>0). Consider Algorithm 7,
which takes in n ∈ N, and outputs the result of Algorithm 6 at 2−n. The
cost function of this algorithm is g ∈ RN such that

g(n) = n. (1.38)

We can show that g ∈ ΘN(n). Therefore, by calling an algorithm which is
ΘR>0(0), we get an algorithm which is ΘN(n). This shows that O is not
suitable for a definition of O-notation in algorithm analysis. 4

Algorithm 8 An algorithm which takes as input n ∈ N, and outputs n.
1: procedure almostIdentity(n)
2: j := 0
3: if n = 4 then
4: return 4
5: end if
6: for i ∈ [0, n[N do
7: j := j + 1
8: end for
9: return j
10: end procedure

Example 1.39 (Almost identity on N). Consider Algorithm 8, which
takes as input n ∈ N, and outputs n. The cost function of this algorithm
is f ∈ RN such that

f(n) =
{
n, n 6= 4,
0, n = 4.

(1.40)

We can show that f ∈ ΘN(n) and f ∈ oN(n). 4
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Algorithm 9 An algorithm which takes as input (m,n) ∈ N2 and outputs n.
1: procedure secondComponent(m,n)
2: return almostIdentity(n)
3: end procedure

Example 1.41 (Calling an almost identity). Consider Algorithm 9,
which takes as input (m,n) ∈ N2, and outputs n. The cost function of this
algorithm is g ∈ RN2 such that

g(m,n) =
{
n, n 6= 4,
0, n = 4.

(1.42)

We can show that g ∈ oN2(n). Therefore, by calling an algorithm which
is ΘN(n), we get an algorithm which is oN2(n). This shows that O is not
suitable for a definition of O-notation in algorithm analysis. 4

Note 1.43 (Blow-up and zeros). There are two kinds of problems with
those definitions of O-notations — such as O, O, O — which ignore points
from the input-set.

If the definition ignores an infinite set — as in ON2 , OZ, and OR>0 —
then it is possible to construct a cost function to blow up in that ignored
set, while not being reflected in the O-notation. This was demonstrated in
Example 1.26 for ON2 , in Example 1.30 for OZ, and in Example 1.37 for
OR>0 . The last example demonstrates a blow-up in a bounded set.

If the definition ignores even a single point — as in O — then it is
possible to construct a cost function with a zero at that point, while not
being reflected in the O-notation. This was demonstrated in Example 1.32
for O.

Such definitions make it impossible to treat the cost functions as black
boxes through their O-sets — something which is essential for cost analysis
based on O-notation. �

1.5 Some history of O-notation

The first reference to the O-notation seems to be that of Bachmann [3, page
401], in 1894, who gave a rather brief and informal definition of the O-notation:
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... wenn wir durch das Zeichen O(n) eine Grösse ausdrücken, deren
Ordnung in Bezug auf n die Ordnung von n nicht überschreitet; ...

which we translate as: when we use the symbol O(n) to represent some quantity,
its order w.r.t. n does not exceed the order of n.

Landau [4, page 31], in 1909, put this definition on a formal grounding by

f ∈ O(g) :⇐⇒ ∃c ∈ R>0,∃N ∈ N,∀n ≥ N : f(n) ≤ cg(n), (1.44)

for all f, g : N→ R. This is asymptotic linear dominance on N. On page 883,
Landau credits this definition to [3].

Both Bachmann and Landau were writing about analytic number theory,
which is a branch of mathematics studying the properties of integers using tools
from analysis. Correspondingly, the O-notation was constructed to address the
needs in this field, such as to bound the error of truncating a series. Landau’s
definition was adopted by computer science, and remains the most wide-spread
definition of O-notation on N to this day.

In [5], in 1968, Knuth defined the O-notation as

f ∈ O(g) :⇐⇒ ∃c ∈ R>0 : |f | ≤ c|g|, (1.45)

for all f, g : S → R, where S = N, or S is an interval of R. Knuth credited the
definition to Bachmann [3]. However, Knuth’s definition probably contained
an omission, since it does not correspond to Bachmann’s definition, at least by
Landau’s interpretation of asymptotic linear dominance. This view is supported
by that in [6], in 1973, the definition was replaced with Equation 1.44. To the
best of my knowledge, in both editions of the book Knuth uses the O-notation
solely to bound the error of truncating a series, and not for the analysis of
algorithms. For analysis of algorithms, he deals with explicit bounds instead.

It is unclear to me when exactly the O-notation was first used in the analysis
of algorithms. The earliest reference we can find is [7], from 1972. The book [8],
from 1974, uses the O-notation in a modern way in the analysis of algorithms,
with the following definition on N:

A function g(n) is said to be O(f(n)) if there exists a constant c
such that g(n) < cf(n) for all but some finite (possibly empty) set
of nonnegative values for n.

This is cofinite linear dominance on N.
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On [8, page 39], an exercise encourages to study the properties of the
following definition of O-notation on N:

f ∈ O(g) :⇐⇒ ∃c ∈ R>0 : f ≤ cg. (1.46)

This is linear dominance on N.
On [8, page 39], another exercise asks for the equivalence of cofinite affine

dominance on N and cofinite linear dominance on N under certain assumptions,
with cofinite affine dominance on N defined by

f ∈ O(g) :⇐⇒ ∃c, d ∈ R>0 : f ≤ cg + d, (1.47)

for all but a finite number of input-arguments.
Prior to this paper, there were no attempts at studying the O-notation

systematically, in order to check whether the definition from analytic number
theory was suitable for the analysis of algorithms. Indeed, it seemed as if the
definition were simply a matter of taste; to quote [9],

On the basis of the issues discussed here, I propose that members
of SIGACT, and editors of computer science and mathematics
journals, adopt the O, Ω, and Θ notations as defined above, unless
a better alternative can be found reasonably soon.

The two exercises in [8] show that the possibility of using a different definition
of the O-notation was certainly noted, but that an argument to favor one over
another was missing.

Related notations
There are several other notations which resemble the way the O-notation works,
which perhaps force strictness, reverse the ordering, or otherwise vary the
ordering. In [4, page 61], Landau defined the o-notation as

f ∈ o(g) :⇐⇒ lim
x→∞

f(x)
g(x) = 0, (1.48)

for all f, g : R→ R. On page 883, Landau states that the o-notation is his own.
Knuth [9], in 1976, defined the Ω-notation as f ∈ Ω(g) :⇐⇒ g ∈ O(f), the

Θ-notation as f ∈ Θ(g) :⇐⇒ f ∈ O(g) and g ∈ O(f), and the ω-notation as
f ∈ ω(g) :⇐⇒ g ∈ o(f), for all f, g : N→ R. This was to remedy the occasional
misuse where O was used in place of the now-defined Θ or Ω.

Vitányi [10] argued that Ω should be defined asymmetrically by

f ∈ Ω(g) :⇐⇒ ∃c ∈ R>0,∀y ∈ N,∃x ≥ y : f(x) ≥ cg(x). (1.49)
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1.6 Objective and contributions

The objective of this paper is to provide a rigorous mathematical foundation
for the O-notation in algorithm analysis. In the following is a list of problems
this paper solves.

Problem 1: What is a cost function?
A cost function of an algorithm has invariably been explained in books —
such as [8] and [2] — as a function which maps the size of the input to R≥0.
Unfortunately, the term size has never been defined formally. Instead, the
concept has been demonstrated by examples such as the length of a sequence,
the number of bits in a number, or the pair (n,m), where n is the number of
vertices in a graph, and m is the number of edges in a graph.

On Turing machines, input-size refers to the number of consecutive bits
on the input-tape that need to be written in order to set the initial state. If
the input is not in binary form already, the input has to be encoded as such,
and the encoding specified. This definition of input-size does not formalize
the intuitive concept of input-size used in books. For example, an encoding
of a graph could have an input-size proportional to m + n. However, there
are graph algorithms whose cost-functions are only dependent on n, and graph
algorithms whose cost-functions2 depend non-trivially on both m and n. Such
cost-functions cannot be captured as a function of m+ n.

Here are some examples of the confusion this concept creates. The prototyp-
ical examples of size are cardinality and volume, with an implied linear order.
But how does one define a linear order sensibly on, say, the pairs (n,m)? If
that does not make sense, should the concept of size be extended to a partial
order, or even a preorder? When the cost function is a function of input size,
what does it mean to remap the input-sizes by function composition from the
right (i.e. f ◦ s)? When this paper allows the domain of the cost function to be
arbitrary, such as Z, R or C, what exactly does it mean for an input to have
size −5, 4.5 or 2 + 4i?

The present paper resolves these questions as follows. The term input-size
does not make sense for an arbitrary model of computation. Instead, this paper
defines the cost function as a function which maps the input-set to R≥0 — the
most detailed characterization of the cost function of an algorithm. Function
composition from the right is used to access the input in a different order

2e.g. m2 log2(n + 1).
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— as when the algorithm is called as a sub-algorithm of another algorithm.
Compatibility with this operation means that merely a different access-order
cannot be made to show inconsistencies in the O-notation.

The grouping of the input-set need only be done if the cost function by itself
is too complex to make sense of. In such a case, we choose a grouping property
— such as the pair (n,m) for graphs — and partition the input-set based on
that property. No additional properties — such as an ordering — are required
from a grouping property.

Problem 2: Why should the O-notation be defined as it is?
Introductory texts on algorithms, such as [1], traditionally explain the definition
of the O-notation by the merits it has, such as abstracting out differences in the
speeds of otherwise identical machines. The asymptotic part – ignoring parts
of the input — is explained by being essential for the notation to concentrate
on the scaling behavior on large inputs, and not on some possible artifacts on
small inputs.

Unfortunately, these explanations fail to pinpoint why we should not pick any
other definition with seemingly the same properties, or whether it is necessary
at all to ignore part of the input to gain sensitivity to the scaling behavior.
Indeed, we show that, in general, no part of the input can be ignored without
the notation failing in some way. The first hint towards this fact is seen by
making an exhaustive list3 of all the rules we need the O-notation to possess;
to express each one, none requires any restrictions — such as an ordering or a
sense of convergence — on the input domain.

The present paper resolves this question as follows. First, the O-notation
should provide us with the simplification we wanted. Second, it should impose an
order on the functions. Third, it should be compatible with all those operations
— such as addition, multiplication, and scalar multiplication — that are needed
to combine the actual cost functions during explicit analysis. Specifically, the
following procedures must yield the same answer:

• Apply a sequence of operations to cost functions, and then simplify the
result with the O-notation.

• Simplify every cost function with the O-notation, and then apply the
same operations as above to the O-sets.

3An exhaustive list can be found in Table 3.1.
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Perhaps the most important operation for algorithm analysis — identified in
this paper — is that of function composition from the right, which corresponds
to reordering or remapping the input. Compatibility with function composition
corresponds to the requirement that the cost function of an algorithm must stay
consistent when it is called with distorted input as a sub-algorithm of another
algorithm. This is a strong requirement: it forces the definitions of O-notations
on different domains to be consistent with each other. When combined with
the other requirements, this turns the definition from a matter of taste to a
unique one.

Problem 3: How should the multivariate O-notation be
defined?
When analyzing a graph algorithm, the input-set is often grouped by a two-
dimensional property (n,m), where n is the number of vertices in the graph,
and m is the number of edges in the graph. To provide the complexity in the
O-notation under such a grouping, the O-notation must also be defined in N2.

Textbooks on algorithms approach the definition on N2 in two ways. The
first way — exemplified in [8, page 312] — is to define the O-notation only in N,
and then silently continue using the notation over multiple variables too. That
is, with no definition. The second way — exemplified in [1] and [2] — is to define
the O-notation in N, and later provide some definition for a generalization to
N2, with the implication that the generalization does not bring anything new.
Among all the books we have looked at, [1] and [2] were the only ones to provide
a definition for N2 — although different ones. The former provided asymptotic
linear dominance, while the latter provided coasymptotic linear dominance.

The first documented symptom of a non-trivial generalization to N2 was
given by Howell [11], who demonstrated a flaw4 in asymptotic linear dominance
on N2. Perhaps it was for this issue, or a similar issue, that [2] changed the
definition to coasymptotic linear dominance.

How can one be sure that this definition as coasymptotic linear dominance
has the desirable properties? In [11], Howell thought he had shown that a
definition with desirable properties is impossible in Nd. However, we will show
in Appendix B that — due to excessively strong assumptions — Howell only
showed that asymptotic linear dominance does not have the desirable properties.

4We will take a closer look at this in Appendix B
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The present paper resolves this question by showing that the only definition
which has the desirable properties is linear dominance; the multivariate definition
is merely an instance of the definition on Nd.

Problem 4: How are the desirable properties connected to
each other?
To make the theory in this paper robust to variation, and to self-test it, this
paper studies the connections between the desirable properties of the O-notation.
This study reveals that certain combinations of properties imply other properties,
and that certain combinations of properties are equivalent to each other. As
a side effect, this paper does not merely study the O-notation in algorithm
analysis, but also other possible or historical definitions of the O-notation.

The study on the connections culminates in the discovery of the 8 primitive
properties, which imply all the desirable properties. Therefore, the question of
whether the desirable properties are reasonable reduces to asking whether the
primitive properties are reasonable.

Problem 5: Do Master theorems hold for linear dominance?
Master theorems are useful tools for analyzing the cost function of a recursive
algorithm up to an O-equivalence. Therefore, it is important to make sure that
the conclusions of Master theorems still hold after adopting linear dominance
as the definition.

The present paper provides the necessary proofs in Appendix F. In summary,
Master theorems hold similarly as with asymptotic linear dominance, with the
simplification that there is no need for so-called regularity conditions [2].

Problem 6: How do existing definitions compare to each
other?
The present paper provides in Appendix G a comparison between various
definitions of the O-notation, based on which primitive properties each fulfills.
The study of how exactly the existing definitions fail the primitive properties
is important, because a priori there is a risk that they may have produced
incorrect analyses.

Fortunately, coasymptotic linear dominance on Nd — on positive functions
— is equivalent to linear dominance on Nd. This covers most of the analyses
that have been done in algorithm analysis. In practice, the saving grace is that
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the O-notation has been manipulated by assuming that the rules on N work in
general, and by implicitly assuming that sub-composability holds.

Problem 7: How should the related notations be defined?
There has been some confusion on how to define the related notations Ω, and o,
as discussed in Section 1.5.

The present paper argues that these notations are merely different viewpoints
of the same underlying order-relation between cost functions; they are fixed by
the definition of the O-notation.

Problem 8: Can existing techniques of analysis still be used?
The present paper shows in Section 6.2 that local linear dominance — a definition
which covers most of the existing definitions — has an equivalent definition by
limits. In addition, under suitable conditions, the other existing definitions are
sometimes equivalent to linear dominance. Together, this allows to continue
using existing analysis tools — such as taking limits — as before, provided one
makes sure that there is a way to transfer the result to linear dominance.

Problem 9: Point out misuses
The present paper points out in Section 2.8 some misuses which occur in actual
publications in computer science. In particular, the O-notation is sometimes
used as a general something-like operator to generalize statements, where it
actually does not make sense. It is my hope that making such misuses explicit
eventually improves communication between computer scientists.

1.7 Relation to publications

The present paper extends a peer-reviewed publication in the Bulletin of EATCS
[12], a doctoral thesis with the same name, as well as various non-peer-reviewed
versions in Arxiv [13].

Most of the proofs have been deferred to appendices. This is to make the
paper readable to the largest possible audience, emphasizing the intuitive ideas.
This does not reflect an ordering in importance — to us, the proofs are the
most important part of this paper.

The research and writing related to this paper, and the above publications,
were done solely by KR; the co-authors checked.
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1.8 Automated checking

This paper was written in such a way that the dependencies between the
theorems can be — and have been — checked by a machine. Each theorem in
the LATEX source is annotated — in a lightweight, but machine-readable manner
— with its assumed and implied properties. When the proof of Theorem A
references Theorem B, it inherits the properties implied by B, from that point
on, provided that the assumptions of B are satisfied at that point. For each
theorem, the software checks that

• the assumptions of each referred theorem are satisfied, and that

• there are no extraneous assumptions.

When a property is not proved by referring to a theorem, it is explicitly marked
proved by the writer, based on the preceding non-machine-checkable proof.

Such automatic checking was useful in the research phases to guarantee that
theorems were not broken due to changing assumptions, or otherwise to point
them out. The software for checking the dependencies, written in Python, can
be obtained from my homepage.5

1.9 Outline of the paper

This paper is organized as follows. Chapter 1 introduces the paper, reviews the
history of the topic, and lists the contributions of the paper. Chapter 2 provides
a more formal introduction to the concepts related to algorithms and their
analysis. Chapter 3 provides a list of desirable properties for an O-notation.
Chapter 4 proves that the primitive properties are equivalent to the definition of
the O-notation as linear dominance. Chapter 5 provides tools for working with
the O-notation, including Master theorems and O-mapping rules. Chapter 6
studies local linear dominance, a generalization which covers most of the existing
definitions. Chapter 7 concludes the paper.

Appendix A provides the notation. Appendix B reviews Howell’s counterex-
ample in more detail. Appendix C shows that the desirable properties reduce
to a set of 8 primitive properties which imply the other properties. Appendix D
shows properties of local linear dominance. Appendix E shows that local linear
dominance can be characterized by ratio-limits. Appendix F shows that Master
theorems work as before under linear dominance. Appendix G compares several

5http://kaba.hilvi.org
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definitions for an O-notation, and shows how each of them fail the desirable
properties. Appendix H provides additional definitions for an O-notation, with
an aim to show the minimality of pre-primitive properties. Appendix I provides
some theory of partitioned sets. Appendix J provides some theory of preordered
sets.
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Preliminaries

In this chapter we provide a brief introduction to algorithms, the computational
model, the cost-model, the primitive properties, and the O-notation.

2.1 Algorithms

What is an algorithm? We adopt an extremely liberal, but completely formalized
view: an algorithm is an abstract state machine [14, 15, 16].

A variable in an abstract state machine M is identified with a string, called
a (function) symbol. Each symbol has an arity n ∈ N, which gives the number of
arguments the symbol accepts as input. A (ground) term is defined recursively
as follows:

• a 0-ary symbol is a term, and

• if f is an n-ary symbol, and t1, . . . , tn are terms, then the string f(t1, . . . , tn)
is a term, and

• there are no other terms.

The set of user-defined symbols, together with a small set of predefined symbols
— such as true, false, or, and, not, =, undef — is called the vocabulary of the
abstract state machine M .

Each n-ary symbol f is associated with a function f : Sn → S.1 The function
f is an interpretation of f . The set S is the base-set, which is common to all

1S0 = {∅}.
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interpretations. The value of a term t, denoted by [t], is defined recursively as
follows:

• if x is a 0-ary symbol, then [x] = x(∅),

• if f is an n-ary symbol, for n ∈ N>0, and t1, . . . , tn are terms, then

[f(t1, . . . , tn)] = f([t1], . . . , [tn]).

In the following, by f : X → Y — where f is a symbol, X ⊂ Sn, and Y ⊂ S —
we mean that f(X) ⊂ Y . In addition, if x is a 0-ary symbol, then by x ∈ X we
mean that x : {∅} → X in the previous sense.

Compared to an ordinary programming language, a 0-ary symbol corresponds
to a variable, while an n-ary symbol, for n ∈ N>0, corresponds to an n-
dimensional array — however, here the index can be an arbitrary set element.

The abstract machine specifies how the interpretations of symbols are to be
modified at each step. The program driving the abstract machine is a finite
sequence of conditional assignments of the form
if condition then

t1 := s1
...

tn := sn
end if

where condition, t1, . . . , tn, and s1, . . . , sn are terms. The formula ti := si
can be thought of as copying an element from an array to another, [ti] := [si],
provided [condition] = [true]. This sequence of assignments is repeated until
(possible) termination.

All of the assignments in a single step are carried out in parallel — not in
sequence. For example, t1 := s1 followed by s1 := t1 causes t1 and s1 to swap
values in the next step.

The basic definition of abstract state machines is both simple, and extremely
general. The generality derives from the virtue of making the whole of set-
theory available for modeling variables. Further abstraction-tools — such as
sequential composition, sub-machine calls, local variables, and return values
— are constructed over this basic definition. For example, Turbo-ASMs [16]
provide such features. From now on, we will assume that such abstraction tools
have already been defined.
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Consider Algorithm 10, which is Newton’s method for finding local zeros
of differentiable functions.2 The input-symbols to this algorithm are a 1-ary
continuously differentiable function f : R → R, a 0-ary initial guess x∗ ∈ R,
and a 0-ary error threshold ε ∈ R≥0; the input-set is C1(R → R) × R × R≥0.
The output — provided the algorithm terminates — is a 0-ary point x ∈ R
such that |f(x)| ≤ ε; the output-set is R. Other symbols are a 1-ary symbol
′ : C1(R → R) → C1(R → R) — differentiation — , a 1-ary symbol | · | : R →
R≥0 — absolute value — a 2-ary symbol > : R× R→ {0, 1} — greater-than
— and 2-ary symbols − : R× R→ R and / : R× R≥0 → R — subtraction and
division. We have used infix notation for subtraction, division, and greater-than;
postfix notation for differentiation; and midfix notation for the absolute value.

Algorithm 10 Newton’s method for finding an element x ∈ X, such that
|f(x)| ≤ ε, for a continuously differentiable function f ∈ C1(R→ R).
1: procedure findZeroOrHang(f, x∗, ε)
2: x := x∗

3: while |f(x)| > ε do
4: x := x− f(x)/f ′(x)
5: end while
6: return x
7: end procedure

Algorithm 10 reads like pseudo-code, but is a completely formalized abstract
state machine. With abstract state machines, the programmer is free to use
the most fitting abstraction for the problem at hand. It should be clear how
using such an abstract programming language enhances communication between
software engineers and domain experts (e.g., physicists).

Termination is not required for an algorithm; consider for example an
operating system. Depending on the input, Algorithm 10 may terminate, or
not. Suppose we require Algorithm 10 to always terminate. To satisfy this
requirement, the programmer can either restrict the input-set to terminating
inputs, or to modify the algorithm — perhaps by limiting the number of
iterations. From now on, we assume every analyzed algorithm to terminate.

A software development project utilizing abstract state machines starts by
creating the most abstract description of the software as an abstract state
machine, called the ground model [16]. This model captures the requirements,

2This example generalizes an example from [17] where Newton’s method is formalized as
an algorithm for real rational functions under the real-RAM model.
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but does not provide any additional details on how the goals are to be attained.
The project then proceeds to refine the model until it can be implemented in
a concrete programming language. The model — in all stages — is used for
verification and validation, and may even be used to generate code automatically.

This brief introduction to abstract state machines is to encourage the reader
to look beyond the Church-Turing paper, and to realize the usefulness of even
the most abstract algorithms — not just those computable algorithms which
work with natural numbers. These are algorithms which take arbitrary sets
as input, and produce arbitrary sets as output. To analyze such abstract
algorithms, we need correspondingly abstract tools.

Here are some examples of input-sets that algorithms can have, or by which
they can be modeled.

Example 2.1 (Algorithms on integers). An algorithm which takes
integers as input could be modeled by Zd. 4

Example 2.2 (Algorithms on floating-point numbers). An algo-
rithm which takes floating-point numbers as input could be modeled by
Rd. 4

Example 2.3 (Algorithms on complex numbers). An algorithm
which takes complex numbers as input could be modeled by Cd. 4

Example 2.4 (Algorithms on matrices). An algorithm which takes a
matrix as input could be modeled by Cm×n. 4

Example 2.5 (Algorithms on sequences). An algorithm which takes
a sequence in X as input could be modeled by

X∗ =
⋃
d∈N

Xd. (2.6)

4
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Example 2.7 (Algorithms on combinations of the above). An al-
gorithm which takes a sequence in X and an integer as input could be
modeled by X∗ × Z. 4

Example 2.8 (Algorithms on graphs). A graph algorithm is often
analyzed under the domain N × N. This domain comes from the worst-
case analysis (say), where the input is grouped according to the number of
vertices and edges. 4

Example 2.9 (Algorithms in computational geometry). An algo-
rithm in computational geometry [18] works directly with points in Rd,
and may not mention floating-point numbers at all. The worst-case (or
direct) analysis may require the domain Rd. 4

Example 2.10 (Algorithms on different dimensions). We may be
interested in how seeing how a geometric algorithm in Rd scales with
respect to the dimension d ∈ N. In this case the input-set may consist of
a union of data structures (e.g. range tree) for different dimensionalities.
Dimensionality can then be used as a grouping property. 4

Example 2.11 (Approximation schemes). When considering an NP-
hard problem, we may consider an approximation scheme [2], where ε ∈ R≥1

specifies the quality of the approximation; ε is specified as part of the input.
4

2.2 Computational model and cost-model

Before an algorithm can be written, the writer must decide on the model of
computation. A model of computation is a mathematical structure, and a
set of atomic operations which manipulate that structure. Some models of
computation are the Turing machine, the random-access machine (RAM) [19],
the real-RAM [17], and the abstract state machine.

The result of complexity analysis — for a given model of computation, a
given algorithm, and a given resource — is a function f : X → R≥0, which
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provides for each input of the algorithm a non-negative real number. This
number tells how much of that resource the algorithm consumes with the given
input. As discussed in Section 2.1, the input-set X can be arbitrary.

Before a complexity analysis can be carried out, the analyst must decide on
the cost-model. A cost-model specifies the amount of resources that running
an atomic operation takes on a given input. A given computational model can
assume different cost-models. When the cost-model is unspecified — as it often
is — the cost of each atomic operation is assumed to be one unit irrespective of
input.

Example 2.12 (Constant cost-models). The most common cost-model
is the unit-cost model, which counts the number of performed atomic
operations. Zero costs can be used to concentrate the interest to specific
resources, such as order-comparisons. 4

Example 2.13 (Non-constant cost-models). An example of a non-
constant cost-model is to assign the addition of natural numbersa a cost
which is proportional to the logarithms of the arguments, so as to be
proportional to the number of bits in their binary representations. 4

aAssuming the computational model supports such an operation.

Example 2.14 (Cost-models for abstract state machines). An ab-
stract state machine specifies costs for reading or writing a memory location
through a given symbol. Reading an addition symbol + at (x, y) ∈ N2 —
x+ y — could be assigned a logarithmic cost as described above. 4

2.3 Primitive properties

Complexity analysis aims to classify and compare algorithms based on their
resource consumptions; the less an algorithm uses resources to solve a given
problem, the better it is compared to other algorithms which solve the same
problem. The cost functions of the algorithms to solve a problem P : X → Y
are elements of RX .3 The most general way to compare them is to define a

3RX = X → R≥0; see Appendix A.
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Figure 2.1: Here fA, fB ∈ RN are such that fA(n) = n/2 + 20 (solid line), and
fB(n) = n2/20 + 10 (dashed line). Should fA �X fB, fB �X fA, fA ≈X fB,
or should fA and fB be incomparable?

preorder4 �X : RX ↔ RX . This relation should capture the intuitive concept
of a cost function f ∈ RX being either better than or equivalent to the cost
function g ∈ RX — in some sense. For brevity, we use the term dominated by.

Note 2.15 (Not worse). It is tempting to use the phrase not worse
than instead of better or equivalent. However, the former means better,
equivalent, or incomparable, which is not what we want. �

Note 2.16 (Cost function of an algorithm). Given an algorithm
A : X � Y , we shall denote its cost function by fA ∈ RX . �

Example 2.17 (Essentially better?). Consider Figure 2.1, where fA, fB ∈
RN are such that fA(n) > fB(n) for n ∈ [0, 20)N, and fA(n) ≤ fB(n), for

4A preorder on a set X is a reflexive and transitive relation �X : X ↔ X.
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n ∈ [20,∞)N. We would then be inclined to say that A has a better cost
function, since fA(n) is small anyway on the finite interval n ∈ [0, 20)N; fA
is “essentially” better than fB . How can this intuition be formalized? 4

To decide between various definitions, we reflect on the fundamental properties
that the analyst needs to complete his/her complexity analysis. An obvious
dominance property is

order-consistency
if an algorithm A never uses more resources than algorithm B, then fA is
better than or equivalent to fB :

fA ≤ fB =⇒ fA �X fB . (2.18)

Note 2.19 (Reflexivity). In particular, order-consistency implies that
�X is reflexive: f �X f . �

Since we want �X to be a preorder, we also need

transitivity
if fA is better than or equivalent to fB , and fB is better than or equivalent
to fC , then fA is better than or equivalent to fC :

(fA �X fB and fB �X fC) =⇒ fA �X fC . (2.20)

In addition to being a preorder, the dominance relation must preserve the
structure present in algorithms: conditional branching, calls with transformed
input, and looping.

Algorithm 11 An algorithm to demonstrate locality. Improving sub-algorithm
F for even integers improves the whole algorithm. We assume resources are
only spent in F .
1: procedure branching(n)
2: if mod(n, 2) = 0 then
3: return F (n)
4: end if
5: return 0
6: end procedure
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locality
substituting a sub-algorithm for a subset of the input-set with a better
or equivalent sub-algorithm results in a better or equivalent algorithm
overall:

(∀i ∈ [1, n]N : (f |Ai) �Ai
(g|Ai)) =⇒ f �X g, (2.21)

for every finite cover A1, . . . , An ⊂ X. Algorithm 11 demonstrates locality.

Algorithm 12 An algorithm to demonstrate sub-composability. Improving
sub-algorithm F improves the whole algorithm. We assume resources are only
spent in F .
1: procedure calling(n)
2: return F(s(n))
3: end procedure

sub-composability
substituting a sub-algorithm called with transformed input with a better
or equivalent sub-algorithm results in a better or equivalent algorithm
overall:

fA �X fB =⇒ fA ◦ s �Y fB ◦ s, (2.22)
for all s : Y → X. Algorithm 12 demonstrates sub-composability.

Algorithm 13 An algorithm to demonstrate sub-homogeneity in N. Improving
sub-algorithm F improves the whole algorithm. We assume resources are only
spent in F .
1: procedure looping(n)
2: for i ∈ [0, u(n)[N do
3: F(n)
4: end for
5: end procedure

sub-homogeneity in N
substituting a sub-algorithm in a loop with a better or equivalent sub-
algorithm results in a better or equivalent algorithm overall:

fA �X fB =⇒ ufA �X ufB , (2.23)
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for all u ∈ RX such that −→u (X) ⊂ N. Algorithm 13 demonstrates sub-
homogeneity in N.

sub-homogeneity in 1/N>0

if an algorithm that loops sub-algorithm A is better than or equivalent to
an algorithm that loops sub-algorithm B, then it is because fA is better
than or equivalent to fB :

fA �X fB =⇒ ufA �X ufB , (2.24)

for all u ∈ RX such that −→u (X) ⊂ 1/N>0.

Note 2.25 (Many preorders). These properties reveal that the preorders
in different sets cannot be defined independently of each other; they are
tightly connected by locality and sub-composability. Rather, the problem
is to find a consistent class of preorders {�X : X ∈ U}, where U is a given
universe. �

Note 2.26 (Trivial dominance). A problem with the listed properties
thus far is that the trivial preorder �X = RX ×RX , for all X ∈ U , fulfills
them all; then the functions in RX are all equivalent. Therefore, for the
comparison to be useful, we need to require �X to distinguish at least
some functions in RX , at least for some X ∈ U . �

The primitive non-triviality property is:

one-separation
n 6�N>0 1.

Note that 1 �N>0 n already holds by order-consistency; one-separation prevents
the order from collapsing due to equivalence.

Finally, there is the question of robustness. Writing an algorithm is an
iterative process, which causes the cost function of an algorithm to change
constantly. If every change is reflected in the ordering, then each change
invalidates an existing complexity analysis of the algorithm. Worse, the change
invalidates all the analyses of the algorithms which use the changed algorithm
as a sub-algorithm. Since an algorithm may face hundreds or thousands of
changes before stabilising into something usable in practice, such an approach
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is infeasible. Therefore, the ordering needs to introduce identification, to make
it robust against small changes in the algorithms. But what is a small change?

The key realization is that for a given algorithm F ∈ A(P ) it is often easy,
with small changes, to produce an algorithm G ∈ A(P ), for which the im-
provement-ratio5 fF /fG stays bounded.6 In contrast, obtaining an unbounded
improvement-ratio often requires considerable insight and fundamental changes
to the way an algorithm works — a new way of structuring data and making
use of it. This definition of interesting provides the desired robustness against
small changes in algorithms.

The primitive abstraction property is:

scale-invariance
if fA �X fB , then fA �X αfB , for all α ∈ R>0.

Note 2.27 (Dominance is linear dominance). We will show in Chap-
ter 4 that the 8 primitive properties are equivalent to the definition of
dominance as linear dominance:

f �X g ⇐⇒ ∃c ∈ R>0 : f ≤ cg. (2.28)

�

Note 2.29 (Generators and propagators). When the primitive prop-
erties are used as axioms, every proof of f �X g must appeal to order-
consistency, and every proof of f 6�X g must appeal to one-separation. All
the other primitive properties propagate these results. �

Definition 2.30 (Related relations). A preorder �X induces the fol-

5Assuming fF > 0.
6For example, change to use Single Instruction Multiple Data (SIMD) instructions.
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lowing related relations in RX :

f ≈X g ⇐⇒ f �X g and g �X f,

f ≺X g ⇐⇒ f �X g and f 6≈X g,

f �X g ⇐⇒ g ≺X f,

f �X g ⇐⇒ g �X f.

(2.31)

Note 2.32 (Strict comparison is weaker). In a preorder which is not
a partial order, the ≺X alone cannot be used to deduce whether f ≈X g;
it is a weaker concept than �X . However, providing ≺X and ≈X suffices.
This is in contrast to a partial order, where ≈X is known to be the set-
equality in X. �

2.4 Problem complexity

Apart from analyzing the resource-cost of a specific algorithm, complexity
analysts also have a greater underlying goal: that of analyzing the resource-
cost of the underlying problem P : X → Y itself — for a given computational
model, a given cost-model, and a given resource. This activity divides into two
sub-activities; finding a lower-bound and an upper-bound for the cost function
of P .

Definition 2.33 (Lower bound). A cost function f ∈ RX is a lower-
bound for a problem P : X → Y , if f �X fA, for all A ∈ A(P ).

Definition 2.34 (Optimal cost function). A cost function f ∈ RX is
optimal for a problem P : X → Y , if f is a lower-bound for P , and g �X f
for each g ∈ RX a lower-bound for P .a

aThat is, f is a greatest lower-bound.

Note 2.35 (Optimal cost function may not exist). An optimal cost
function may not exist for a problem, as shown in [Incompleteness] (2.83).
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When it exists, the optimal cost function for P ,

inf
�X

{fA : A ∈ A(P )}, (2.36)

is unique up to equivalence. �

Definition 2.37 (Optimal algorithm). An algorithm A ∈ A(P ) is
optimal, if fA is optimal for P .

Note 2.38 (Optimal algorithm may not exist). An optimal algorithm
may not exist for a given problem. �

Definition 2.39 (Upper bound). A cost function f ∈ RX is an upper-
bound for a problem P : X → Y , if fA �X f , for some A ∈ A(P ).

An upper-bound is found by finding an actual algorithm for solving P . While
there are computational problems which cannot be solved at all,7 establishing
at least one upper-bound for a solvable problem is often easy. These are the
brute-force algorithms, which compute or check everything without making any
use of the underlying structure in the problem.

2.5 O-notation

Definition 2.40 (O-notation). An O-notation over the universe U is a
class of functions

O := {OX : RX → P(RX) : X ∈ U}, (2.41)

where
OX(f) = {g ∈ RX : g �X f}. (2.42)

7e.g., the halting problem under Turing machines.
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Note 2.43 (Different symbols). The O is used as a generic symbol for
studying how the different desirable properties of O interact with each
other. We will use drawings inside the O symbol for specific versions of
the O-notation, such as O for asymptotic linear dominance. �

Note 2.44 (Different viewpoints). It is equivalent to define either the
functions {OX : X ∈ U}, or the preorders {�X : X ∈ U}; one can be recov-
ered from the other. We shall give the theorems in terms of {OX : X ∈ U},
since this is more familiar to computer scientists. However, we find that
intuition works better when working with {�X : X ∈ U}. �

Note 2.45 (Related notations). The related notations are given in
terms of the dominance relation as:

oX(f) = {g ∈ RX : g ≺X f},
ΩX(f) = {g ∈ RX : g �X f},
ωX(f) = {g ∈ RX : g �X f},
ΘX(f) = {g ∈ RX : g ≈X f}.

(2.46)

�

The O-notation extends naturally to sets of functions; such generality is
sometimes needed.

Definition 2.47 (O-notation). The O-notation on a set X is a function
OX : P(RX)→ P(RX) such that

OX(A) =
⋃
f∈A

OX(f). (2.48)

2.6 Implicit conventions

An implicit convention is an overload of notation adopted by people working in
a given field. Since it is an overload, the reader is required to deduce the correct
meaning of such notation from the context. Here are some implicit conventions
related to the O-notation — as commonly used in computer science.
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Placeholder convention

Definition 2.49 (Placeholder convention). The placeholder conven-
tion is to use A ⊂ P(RX) as a placeholder for an anonymous function
g ∈ OX(A). It then must be guessed from the context whether the author
means by A the actual set, or the anonymous function g.

Example 2.50 (Cost of an algorithm). An algorithm costs ON
(
n2) if

its cost function is an element of ON
(
ON
(
n2)) = ON

(
n2). 4

Example 2.51 (Exponential of an O-set). Consider the statement
that an algorithm costs 2ON(n). As a set, 0.5 6∈ 2ON(n). However,

0.5 ∈ ON

(
2ON(n)

)
, (2.52)

since 0 ∈ ON(n) and 0.5 ∈ ON
(
20). Similarly,

22.5n ∈ ON

(
2ON(n)

)
, (2.53)

since 2.5n ∈ ON(n). 4

Domain convention

Definition 2.54 (Domain convention). The domain convention is to
leave off the domain of the O-notation, say O

(
n2), and then let the reader

guess, for each use, the domain from the context. Sometimes the domain
convention leads to a difficult interpretation.

Example 2.55 (Difficult interpretation). Consider an algorithm [20]
under the unit-cost w-bit RAM model, where w ∈ N, which for I ⊂
[0, 2w)N = U finds a nearest neighbor of i ∈ U in I in time

O(log2(log2(∆ + 4))), (2.56)
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where ∆ ∈ N is the distance between i and its nearest neighbor in I.
Intuitively, this sounds reasonable, but what is the domain? Our thinking
process went as follows.

Since the expression contains only a single symbol ∆, we assumed it to
be a univariate O-notation. Our first guess was OU(log2(log2(∆ + 4))) —
with w fixed. However, since U is bounded, this is equal to OU(1). The
guess had to be wrong; otherwise the authors would have reported the
complexity as O(1).

Our second guess was ON(log2(log2(∆ + 4))) — again with w fixed.
However, this arbitrarily extends the complexity analysis to elements
outside the input-set, since ∆ < 2w. In addition, it is not always possible
to do such an extension, such as when the function is log2(log2(2w −∆ + 4))
instead.

Finally, we observed that the complexity depends both on w and ∆ — al-
though O(log2(log2(∆ + 4))) never mentions w. The correct formalization
is given by OD(log2(log2(∆ + 4))), where D =

{
(w,∆) ∈ N2 : ∆ ∈ [0, 2w)

}
.

The corresponding algorithm would then take as input

w ∈ N>0,

I ∈ ∪k∈N>0P
(
[0, 2k)N

)
,

i ∈ ∪k∈N>0 [0, 2k),
(2.57)

subject to I ⊂ [0, 2w)N and i ∈ [0, 2w). 4

2.7 Worst case, best case, average case

In this section we will formalize the concepts of worst-case, best-case, and
average-case analyses.

Definition 2.58 (Grouping). A grouping of X is a function g : X → Z.

Definition 2.59 (Case). A case over a grouping g : X → Z is a function
s : −→g (X)→ X such that g ◦ s = idZ ; a right inverse of g.
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Definition 2.60 (Worst case). A case s : −→g (X) → X over a grouping
g : X → Z is called worst of f ∈ RX , if

(f ◦ s)(z) = sup
−→
f (←−g ({z})), (2.61)

for all z ∈ −→g (X).

Note 2.62. A worst case may not exist. �

Definition 2.63 (Worst-case analysis). A worst-case analysis of f ∈
RX over a grouping g : X → Z is the process of finding out

sup
−→
f (←−g ({z})) (2.64)

or some O-set which contains it.

Definition 2.65 (Best case). A case s : −→g (X) → X over a grouping
g : X → Z is called best of f ∈ RX if

(f ◦ s)(z) = inf
−→
f (←−g ({z})), (2.66)

for all z ∈ −→g (X).

Note 2.67. A best case may not exist. �

Definition 2.68 (Best-case analysis). A best-case analysis of f ∈ RX
over a grouping g : X → Z is the process of finding out

inf
−→
f (←−g ({z})) (2.69)

or some Ω-set which contains it.
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Example 2.70 (Analysis of insertion sort). Assume the RAM model,
with unit cost for comparison of integers and zero cost for other atomic
operations. Let N∗ =

⋃
d∈N Nd be the set of all finite sequences over N.

Let F : N∗ � N∗ be the insertion sort algorithm [2], which sorts a given
input sequence x into increasing order. Let f ∈ RN∗ be the number of
comparisons made by F . Let g : N∗ → N be such that g(x) = |x|, the length
of the sequence x. Let s : N→ N∗ be the worst case of f over g; each such
sequence is decreasing. Then the worst-case complexity of f over g is f ◦ s,
and the worst-case analysis of f provides ON(f ◦ s) = ON

(
n2 + 1

)
. Let

r : N→ N∗ be the best case of f over g; each such sequence is increasing.
Then the best-case complexity of f over g is f ◦r, and the best-case analysis
of f provides ΩN(f ◦ r) = ΩN(n+ 1). For an arbitrary case p : N→ N∗ of
f over g, it holds that (f ◦ p) ∈ ΩN(n+ 1) ∩ON

(
n2 + 1

)
. 4

Definition 2.71 (Average-case analysis). Let (X,ΣX ,P) be a probabil-
ity space, and (Z,ΣZ) be a measurable space. Let g : X → Z be a random
element, and f ∈ RX be a random variable. An average-case analysis of f
over g is the process of finding out OZ(E[f | g] ◦ s), where s : −→g (X)→ X
is any case over g, and E stands for (conditional) expectation.

Since worst-case, best-case, and average-case analyses are the most common
forms of complexity analysis in computer science — with the grouping set
almost always Z ⊂ Nd, for some d ∈ N>0 — this has led to the often repeated
claim that the result of complexity analysis is a function which maps an ‘input
size’ to the amount of used resources. For example, [2, page 25] writes as follows
(emphasis theirs):

The best notion for input size depends on the problem being studied.
For many problems, such as sorting or computing discrete Fourier
transforms, the most natural measure is the number of items in the
input - for example, the array size n for sorting. For many other
problems, such as multiplying two integers, the best measure of
input size is the total number of bits needed to represent the input
in ordinary binary notation. Sometimes, it is more appropriate to
describe the size of the input with two numbers rather than one.
For instance, if the input to an algorithm is a graph, the input size
can be described by the numbers of vertices and edges in the graph.
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We shall indicate which input size measure is being used with each
problem we study.

Complexity theorists sometimes study the cost functions of Turing machines
with respect to input-tape-size. However, this is not a formalization of the
input-size as described in the above quotation.

The term input-size — as it has been used — is a synonym for a group label.
A group label need not have any properties, such as an order. A grouping need
only be done if the analysis or its interpretation otherwise seems difficult. It
would seem clearer to use the term input-size only in those cases where the
group labels form a set which is linearly ordered and contains a least element
(e.g. N≥0, R≥0, or cardinal numbers).

We have shown above how input-size-thinking is subsumed by the more
general input-set-thinking. In the input-set thinking, a set is used to provide a
mathematical model for a data structure, and a cost function is a function of
this data.

2.8 Misuses

The O-notation (and related definitions) is sometimes misused even by experi-
enced researchers in computer science. By a misuse we mean to use the notation
in a context which does not have a formal meaning — even after applying the
implicit conventions specific to computer science.

In the following we review some misuses made by experienced researchers
in computer science. Let us note that, despite the misuses, the sources we
refer to here are both great reading: [2] is a classic book about algorithms,
data-structures, and their analysis, while [21] provides an ingenious scheme for
converting a static dictionary to a linear-space dynamic dictionary.

Example 2.72 (Recurrence equations). Reference [2, page 102] studies
the solutions to the recurrence equation

T (n) =
{
aT (n/b) + F (n), n > 1,
Θ(1), n = 1,

(2.73)

where a ∈ R≥1, b ∈ R>1, B =
{
bi : i ∈ N

}
, and T, F ∈ RB . The intent here

is to study the Master theorem over powers — as we do in Appendix F.1.
Unfortunately, since Θ(1) := ΘX(1) ⊂ RX is a set of functions, and not a
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non-negative real number, this equation does not have a formal meaning.
In addition, the set X is left undefined.

Applying the placeholder convention leads to

T (n) =
{
aT (n/b) + F (n), n > 1,
1̂, n = 1,

(2.74)

where 1̂ ∈ ΘX(1). This still does not make sense; 1̂ is a function, not a
non-negative real number.

The motivation for this recurrence equation is the analysis of divide-
and-conquer algorithms, where the algorithm recursively solves b – perhaps
overlapping — sub-problems (when b is an integer), and then combines their
results to solve the original problem. The call-graph of such an algorithm
is a tree, and in each leaf of this tree we would perhaps like to assign a
different constant for the amount of resources it takes. The problem is that
the function T can have only one value for T (1).

One way to fix the recurrence equation is to simplify it to

T (n) =
{
aT (n/b) + F (n), n > 1,
d, n = 1,

(2.75)

where d ∈ R>0, which is the form we study in Appendix F. We will show
that OB(T ) is independent of the choice of d. Therefore, the simplified
recurrence equation provides a solution for the divide-and-conquer analysis
even when the costs in the leaf nodes vary in a fixed closed interval.a We
believe this is the idea that [2] was aiming for; it just is not captured by
replacing d with Θ(1). 4

aAssuming the interval does not contain zero.

Example 2.76 (Conditional statements). Let k ∈ N>0, and S, T ∈
RN>0 . In [21, page 9], there is the following statement:

Then for n = ω(1), we have

n ≥ O
(
n1/k

)
≥ O

(
n(1−1/k)/k

)
,
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and
n1−1/k ≥ O

(
n(1−1/k)2

)
.

For n = O(1), we trivially have

T (n) = O(1) = O(S(n)).

We decode this as follows:

Then for n ∈ ωN>0(1), we have

ON>0(n) ⊃ ON>0

(
n1/k

)
⊃ ON>0

(
n(1−1/k)/k

)
,

and
ON>0

(
n1−1/k

)
⊃ ON>0

(
n(1−1/k)2

)
.

For n ∈ ON>0(1), we trivially have

T ∈ ON>0(1) = ON>0(S).

The expression n ∈ ωN>0(1) is always true for O, O, O and O. Similarly,
the expression n ∈ ON>0(1) is always false. The authors have an intuitive
concept which they want to transmit. However, the formalization of the
intuition is incorrect, and so the communication fails. 4

2.9 Completeness

In this section we study the completeness of the dominance relation �X .

Definition 2.77 (Completeness over a family). A preorder�X : RX ↔
RX is complete over A ⊂ P(RX), if every F ∈ A which has a lower-bound
(an upper-bound) in RX has a greatest lower-bound (a least upper-bound)
in RX .

Note 2.78. Different types of completeness are listed in Table 2.1. �
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Concept Complete over...
Complete P(RX)
Directed-complete directed subsets of RX
Chain-complete linearly-ordered subsets of RX
Lattice P̂(RX)
Algorithm-complete {{fF : F ∈ A(P )} : P ∈ (X → P (X))}

Table 2.1: Different types of completeness.

Proposition 2.79 (Lattice structure is implied). �X has order-con-
sistency, locality, and injective sub-composability. =⇒ �X has lattice
structure.

Proof. Let f1, . . . , fn ∈ RX . Then f1, . . . , fn ≤ max(f1, . . . , fn), and by order-
consistency f1, . . . , fn �X max(f1, . . . , fn). Suppose h ∈ RX is such that
f1, . . . , fn �X h �X max(f1, . . . , fn). Let

Fi = {x ∈ X : fi(x) = max(f1, . . . , fn)}. (2.80)

By injective sub-composability, (fi|Fi) �Fi (h|Fi) �Fi (fi|Fi). Therefore
(fi|Fi) ≈Fi (h|Fi). By locality, max(f1, . . . , fn) ≈X h. Therefore

sup{f1, . . . , fn} ≈X max(f1, . . . , fn). (2.81)

Similarly, inf{f1, . . . , fn} ≈X min(f1, . . . , fn).

Note 2.82 (Equivalence between types of completeness). When
�X is a lattice, every subset of RX is directed, and therefore directed-
complete is equivalent to complete. Further, chain-complete is equivalent
to directed-complete by Zorn’s lemma.a �

aZorn’s lemma is equivalent to the axiom of choice.

Theorem 2.83 (Incompleteness). �N>0 has order-consistency, transi-
tivity, sub-homogeneity in N, sub-homogeneity in 1/N>0, scale-invariance,
and one-separation. =⇒ �N>0 is not complete.
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Proof. �N>0 has sub-homogeneity by [Sub-homogeneity is implied] (C.4).
Let fα ∈ RN>0 be such that fα(n) = αn, for all α ∈ R≥0. By order-

consistency, α ≤ β =⇒ fα �N>0 fβ , for all α, β ∈ R≥0.
Suppose there exists α, β ∈ R≥0 such that α < β and fα �N>0 fβ . By

sub-homogeneity, (fβ/fα) �N>0 1. It can be shown that n ≤ 1
e ln(β/α) (fβ/fα).

By order-consistency and scale-invariance, n �N>0 (fβ/fα). By transitivity,
n �N>0 1, which contradicts one-separation. Therefore, α < β =⇒ fα ≺N>0 fβ ,
for all α, β ∈ R≥0.

Let F =
{
fα : α ∈ R>2}. Then f2 is a lower-bound of F . Let f ∈ RN>0 be

a lower-bound of F such that f2 �N>0 f .
Suppose f ≈N>0 βn, for some β ∈ R>2. Then

(
2+β

2

)n
≺N>0 βn ≈N>0 f ,

which contradicts f being a lower-bound of F . Therefore f ≺N>0 αn, for all
α ∈ R>2.

By order-consistency, f �N>0 nf . Suppose nf �N>0 f . By sub-homogeneity,
n �N>0 1, which contradicts one-separation. Therefore f ≺N>0 nf .

By sub-homogeneity, nf ≺N>0 nαn, for all α ∈ R>2. It can be shown that
nαn ≤ β/α

ln(β/α)eβ
n, for all α, β ∈ R>2 such that α < β. By order-consistency

and scale-invariance, nαn �N>0 βn, for all α, β ∈ R>2 such that α < β. By
transitivity, nf ≺N>0 αn, for all α ∈ R>2; nf is a lower-bound for F . Since
f ≺N>0 nf , there is no greatest lower-bound for F .
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Desirable properties

In this section we provide an extensive list of desirable properties for an O-
notation. We will show that they all hold for linear dominance in Appendix C.
Each property is given for OX, where X ∈ U . A given property holds for O if
it holds for OX, for all X ∈ U . The desirable properties are listed in Table 3.1.

Note 3.1 (A computational model for examples). When analyzing
the cost functions of the example-algorithms in this section, addition costs
one unit, while all other operations cost nothing. �

3.1 Dominance properties

The dominance properties are those which mirror the desire for OX to represent
a down-set of a preorder, where the preorder is consistent with the partial order
≤ in RX .

Definition 3.2 (Order-consistency). OX has order-consistency, if

f ≤ g =⇒ f ∈ OX(g), (3.3)

for all f, g ∈ RX .
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Name Property
Order-consistency f ≤ g =⇒ f ∈ OX(g)
Reflexivity f ∈ OX(f)
Transitivity (f ∈ OX(g) and g ∈ OX(h)) =⇒ f ∈ OX(h)
Orderness f ∈ OX(g) ⇐⇒ OX(f) ⊂ OX(g)
Zero-separation 1 6∈ ON>0(0)
One-separation n 6∈ ON>0(1)
Zero-triviality OX(0) = {0}
Scale-invariance OX(αf) = OX(f)
Bounded translation-inv. OX(f + β + α) = OX(f + β)
Power-homogeneity OX(f)α = OX(fα)
Additive consistency uOX(f) + vOX(f) = (u+ v) OX(f)
Multiplicative consistency OX(f)u ·OX(f)v = OX(f)u+v

Maximum consistency max(OX(f),OX(f)) = OX(f)
Locality (∀D ∈ C : (f |D) ∈ OD(g|D)) =⇒ f ∈ OX(g)
Scalar homogeneity αOX(f) = OX(αf)
Sub-homogeneity uOX(f) ⊂ OX(uf)
Sub-homogeneity in Q≥0 uOX(f) ⊂ OX(uf) (−→u (X) ⊂ Q≥0)
Sub-homogeneity in N uOX(f) ⊂ OX(uf) (−→u (X) ⊂ N)
Sub-hom. in 1/N>0 uOX(f) ⊂ OX(uf) (−→u (X) ⊂ 1/N>0)
Super-homogeneity uOX(f) ⊃ OX(uf)
Sub-multiplicativity OX(f) ·OX(g) ⊂ OX(fg)
Super-multiplicativity OX(f) ·OX(g) ⊃ OX(fg)
Sub-restrictability (OX(f)|D) ⊂ OD(f |D)
Super-restrictability (OX(f)|D) ⊃ OD(f |D)
Additivity OX(f) + OX(g) = OX(f + g)
Summation rule OX(f + g) = OX(max(f, g))
Maximum rule max(OX(f),OX(g)) = OX(max(f, g))
Maximum-sum rule max(OX(f),OX(g)) = OX(f) + OX(g)
Sub-composability OX(f) ◦ s ⊂ OY(f ◦ s)
Injective super-comp. OX(f) ◦ s ⊃ OY(f ◦ s) (s injective)
Extensibility OX(f) ◦ [X × Y ] ⊂ OX×Y(f ◦ [X × Y ])
Subset-summability OX

(∑
(y,z)∈Sx

a(z)h(y)
)
⊂

OX

(∑
(y,z)∈Sx

a(z)h(y)
)

Table 3.1: Desirable properties for an O-notation. Here X,Y, Z ∈ U , f, g, u, v ∈
RX , h ∈ RY , h ∈ OY

(
h
)
, α, β ∈ R>0, D ⊂ X, s : Y → X, S : X → P̂(Y × Z),

a ∈ RZ , and C ⊂ P(X) is a finite cover of X. Primitive properties marked
with a bold face. 49
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Example 3.4. Let X ∈ U and f ∈ RX . By order-consistency, 0 ∈ OX(f).
4

Example 3.5 (Powers after 1). Suppose R ∈ U . Let α, β ∈ R be such
that α ≤ β. Then

xα ≤ xβ , (3.6)

for all x ∈ R≥1. By order-consistency,

xα ∈ OR≥1
(
xβ
)
. (3.7)

4

Example 3.8 (Powers before 1). Suppose R ∈ U . Let α, β ∈ R be such
that α ≤ β. Then

xβ ≤ xα, (3.9)

for all x ∈ (0, 1] ⊂ R. By order-consistency,

xβ ∈ O(0,1](xα). (3.10)

4

Example 3.11 (Positive power dominates a logarithm). Suppose
R≥1 ∈ U . Let α, γ ∈ R>0 and β ∈ R>1. It can be shown that

logβ(x)γ ≤
(

γ

αe ln(β)

)γ
xα, (3.12)

for all x ∈ R≥1. By order-consistency,

logβ(x)γ ∈ OR≥1

((
γ

αe ln(β)

)γ
xα
)
. (3.13)

4
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Example 3.14 (Positive power dominates a logarithm, general-
ized). Let X ∈ U , α, γ ∈ R>0, β ∈ R>1, and f ∈ RX be such that f ≥ 1.
Then

logγβ ◦f ≤
(

γ

αe ln(β)

)γ
fα. (3.15)

By order-consistency,

logγβ ◦f ∈ OX

((
γ

αe ln(β)

)γ
fα
)
. (3.16)

Since this holds for all α ∈ R>0,

logγβ ◦f ∈
⋂

α∈R>0

OX

((
γ

αe ln(β)

)γ
fα
)
. (3.17)

4

Example 3.18 (Functions on a finite set). Let X ∈ U be finite, and
f ∈ RX . Then f ≤ max(

−→
f (X)). By order-consistency,

f ∈ OX

(
max(

−→
f (X))

)
. (3.19)

4

Definition 3.20 (Reflexivity). OX has reflexivity, if

f ∈ OX(f), (3.21)

for all f ∈ RX .

Example 3.22. (5n+ 3) ∈ ON(5n+ 3). 4
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Definition 3.23 (Transitivity). OX has transitivity, if

(f ∈ OX(g) and g ∈ OX(h)) =⇒ f ∈ OX(h), (3.24)

for all f, g, h ∈ RX .

Example 3.25. Let g ∈ ON
(
n2), and f ∈ ON(g). By transitivity, f ∈

ON
(
n2). 4

Definition 3.26 (Orderness). OX has orderness, if

f ∈ OX(g) ⇐⇒ OX(f) ⊂ OX(g), (3.27)

for all f, g ∈ RX .

Example 3.28. n ∈ ON
(
n2) ⇐⇒ ON(n) ⊂ ON

(
n2). 4

3.2 Non-triviality properties

The non-triviality properties are those which require that the O-notation be
detailed enough.

Example 3.29. The class of functions OX : RX → P(RX), such that
OX(f) := RX , for all X ∈ U , satisfies all of the desirable properties for an
O-notation except those of non-triviality. 4

Definition 3.30 (Zero-separation). O has zero-separation, if

1 6∈ ON>0(0). (3.31)
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Definition 3.32 (One-separation). O has one-separation, if

n 6∈ ON>0(1). (3.33)

Definition 3.34 (Zero-triviality). OX has zero-triviality, if

OX(0) = {0}. (3.35)

3.3 Abstraction properties

The abstraction properties are those which define the way in which the O-
notation identifies functions.

Definition 3.36 (Scale-invariance). OX has scale-invariance, if

OX(αf) = OX(f), (3.37)

for all f ∈ RX , and α ∈ R>0.

Example 3.38. ON(2n) = ON(n). 4

Example 3.39 (Power dominates a logarithm, continued). LetX ∈
U , β ∈ R>1, γ ∈ R>0, and f ∈ RX be such that f ≥ 1. Continuing
Example 3.14, by scale-invariance,

OX

(
logγβ ◦f

)
⊂

⋂
α∈R>0

OX(fα). (3.40)

4

Example 3.41 (Functions on a finite set, continued). Let X ∈ U
be finite, and f ∈ RX . By Example 3.18, f ∈ OX

(
max(

−→
f (X))

)
. By scale-

invariance, f ∈ OX(1), if f 6= 0, and f ∈ OX(0), if f = 0. 4
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Definition 3.42 (Bounded translation-invariance). OX has bounded
translation-invariance, if

OX(f + β + α) = OX(f + β), (3.43)

for all f ∈ RX , and α, β ∈ R>0.

Example 3.44. ON>0(n+ 1) = ON>0(n). 4

Note 3.45 (The role of β in bounded translation-invariance). Sup-
pose f ∈ RX is such that that 0 ∈

−→
f (X). Then β protects against

transforming a zero cost to a non-zero cost.
Suppose f ∈ RX is such that f > 0 and inf

−→
f (X) = 0 — e.g., f ∈ RN>0

such that f(n) = 1/n2. Then it is possible to call the corresponding al-
gorithm F arbitrary number of times — with different inputs — while
spending a bounded amount of resources. The β protects against trans-
forming a bounded cost function into an unbounded one. �

Example 3.46. Suppose R>0, X ∈ U , and X 6= ∅. Then the following
do not follow from bounded translation-invariance: ON(n+ 1) = ON(n),
OX(1) = OX(0), and OR>0((1/x) + 1) = OR>0(1/x). 4

Definition 3.47 (Power-homogeneity). OX has power-homogeneity, if

OX(f)α = OX(fα), (3.48)

for all f ∈ RX , and α ∈ R>0.

Example 3.49. ON(n)2 = ON
(
n2). 4
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Definition 3.50 (Additive consistency). OX has additive consistency,
if

uOX(f) + vOX(f) = (u+ v) OX(f), (3.51)

for all f, u, v ∈ RX .

Example 3.52. 3 ON(n) + n2 ON(n) = (3 + n2) ON(n). 4

Definition 3.53 (Multiplicative consistency). OX has multiplicative
consistency, if

OX(f)u ·OX(f)v = OX(f)u+v
, (3.54)

for all f, u, v ∈ RX .

Example 3.55. ON(n)3 ON(n)n
2

= ON(n)3+n2
. 4

Definition 3.56 (Maximum consistency). OX has maximum consis-
tency, if

max(OX(f),OX(f)) = OX(f), (3.57)

for all f ∈ RX .

3.4 Structural properties

The structural properties are those which mirror the structure of algorithms:
repetition, conditional branching, and abstraction.

Definition 3.58 (Locality). O has locality, if

(∀D ∈ C : (f |D) ∈ OD(g|D)) =⇒ f ∈ OX(g). (3.59)

for all X ∈ U , f, g ∈ RX , and C ⊂ P(X) a finite cover of X.
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Definition 3.60 (Scalar homogeneity). OX has scalar homogeneity, if

αOX(f) = OX(αf), (3.61)

for all f ∈ RX , and α ∈ R>0.

Example 3.62. 2 ON(n) = ON(2n). 4

Definition 3.63 (Sub-homogeneity). OX has sub-homogeneity, if

uOX(f) ⊂ OX(uf), (3.64)

for all f, u ∈ RX .

Definition 3.65 (Super-homogeneity). OX has super-homogeneity, if

uOX(f) ⊃ OX(uf), (3.66)

for all f, u ∈ RX .

Definition 3.67 (Homogeneity). OX has homogeneity, if it has sub-
homogeneity and super-homogeneity.

Definition 3.68 (Sub-multiplicativity). OX has sub-multiplicativity, if

OX(f) ·OX(g) ⊂ OX(fg), (3.69)

for all f, g ∈ RX .

Definition 3.70 (Super-multiplicativity). OX has super-multiplicativ-
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ity, if
OX(f) ·OX(g) ⊃ OX(fg), (3.71)

for all f, g ∈ RX .

Definition 3.72 (Multiplicativity). OX has multiplicativity, if it has
sub-multiplicativity and super-multiplicativity.

Algorithm 14 An algorithm to demonstrate multiplicativity.
1: procedure H(x)
2: for i ∈ [0, G(x)[N do
3: F(x)
4: end for
5: end procedure

Example 3.73 (Demonstration of multiplicativity). Consider Al-
gorithm 14, H : X � Y . This algorithm runs the same sub-algorithm,
F : X � Z, repeatedly G(x) ∈ N times, where the algorithm G : X � N
has zero cost (i.e. does not perform additions). Let the cost functions of
H and F be h, f ∈ RX , respectively. Then

h = fG. (3.74)

By multiplicativity,

OX(h) = OX(fG)
= OX(f) ·OX(G).

(3.75)

That is, if we have analyzed F to the have complexity OX(f), and know
OX(G), then the complexity of H is given by OX(h) = OX(f) · OX(G).

4

Example 3.76. ON(n) ·ON
(
n2) = ON

(
n3). 4
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Example 3.77. ON(0) ·ON(n) = ON(0). 4

Example 3.78. Suppose R>0 ∈ U . Then OR>0(1/x) ·OR>0(x) = OR>0(1).
4

Definition 3.79 (Sub-restrictability). OX has sub-restrictability, if

(OX(f)|D) ⊂ OD(f |D), (3.80)

for all f ∈ RX , and D ⊂ X.

Definition 3.81 (Super-restrictability). OX has super-restrictability,
if

(OX(f)|D) ⊃ OD(f |D), (3.82)

for all f ∈ RX , and D ⊂ X.

Definition 3.83 (Restrictability). OX has restrictability, if it has sub-
restrictability and super-restrictability.

Algorithm 15 An algorithm to demonstrate restrictability.
1: procedure H(x)
2: return F(x)
3: end procedure

Example 3.84 (Demonstration of restrictability). Let X ∈ U , D ⊂
X, and Y be a set. Consider Algorithm 15, H : D � Y . This algorithm
passes its argument — as it is — to the algorithm F : X � Y . Let h ∈ RD
and f ∈ RX be the cost functions of algorithms H and F , respectively.
Then

h = (f |D). (3.85)
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By restrictability,
OD(h) = (OX(f)|D). (3.86)

That is, if we have analyzed F to have the complexity OX(f), then the
complexity of H is given by OD(h) = (OX(f)|D). 4

Example 3.87. (ON(n)|2N) = O2N(n) 4

Example 3.88. Let D :=
{

(n, n) ∈ N2 : n ∈ N
}
. Then (ON2(mn)|D) =

OD
(
n2). 4

Example 3.89. (ON2(mn)|{(1, 1)}) = O{(1,1)}(1) 4

Example 3.90. Suppose R>0 ∈ U , and g ∈ OR>0(1/x). By sub-re-
strictability,

(
g|R≥1) ∈ OR≥1(1/x). By order-consistency, 1/x ∈ OR≥1(1).

By transitivity,
(
g|R≥1) ∈ OR≥1(1) 4

Definition 3.91 (Additivity). OX has additivity, if

OX(f) + OX(g) = OX(f + g), (3.92)

for all f, g ∈ RX .

Algorithm 16 An algorithm to demonstrate additivity.
1: procedure H(x)
2: return (F(x), G(x))
3: end procedure

Example 3.93 (Demonstration of additivity). Consider Algorithm 16,
H : X � Y ×Z, which decomposes into two sub-algorithms F : X � Y , and
G : X � Z, such that H(x) = (F (x), G(x)). Suppose the cost functions of

59



Chapter 3. Desirable properties

H, F , and G are h, f, g ∈ RX , respectively. Then

h = f + g. (3.94)

By additivity,
OX(h) = OX(f + g)

= OX(f) + OX(g).
(3.95)

That is, if we have analyzed F andG to have complexities OX(f) and OX(g),
respectively, then the complexity of H is given by OX(h) = OX(f) + OX(g).

4

Example 3.96. ON(n) + ON
(
n2) = ON

(
n+ n2). 4

Example 3.97. Let X ∈ U , and f, g ∈ RX . By order-consistency, and
additivity,

f + OX(g) ⊂ OX(f) + OX(g)
= OX(f + g).

(3.98)

4

Definition 3.99 (Summation rule). OX has the summation rule, if

OX(f + g) = OX(max(f, g)), (3.100)

for all f, g ∈ RX .

Note 3.101. Summation rule states that, in a finite sequence of algorithm
calls, the worst cost function over all calls determines the complexity of
the call-sequence. �

Example 3.102. ON
(
n+ n2) = ON

(
max(n, n2)

)
= ON

(
n2). 4
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Example 3.103. Suppose R≥1 ∈ U . Then

OR≥1
(
x+ x2) = OR≥1

(
max(x, x2)

)
= OR≥1

(
x2). (3.104)

4

Example 3.105. Suppose R≥0 ∈ U . It does not follow from the summa-
tion rule that OR≥0

(
x+ x2) = OR≥0

(
x2). 4

Definition 3.106 (Maximum rule). OX has the maximum rule, if

max(OX(f),OX(g)) = OX(max(f, g)), (3.107)

for all f, g ∈ RX .

Example 3.108. max(ON(n),ON
(
n2)) = ON

(
max(n, n2)

)
= ON

(
n2).
4

Definition 3.109 (Maximum-sum rule). OX has the maximum-sum
rule, if

max(OX(f),OX(g)) = OX(f) + OX(g), (3.110)

for all f, g ∈ RX .

Example 3.111. max(ON(n),ON
(
n2)) = ON(n) + ON

(
n2). 4

Definition 3.112 (Sub-composability). OX has sub-composability, if

OX(f) ◦ s ⊂ OY(f ◦ s), (3.113)
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for all f ∈ RX and s : Y → X.

Definition 3.114 (Injective sub-composability). OX has injective sub-
composability, if it has sub-composability for all injective s : Y → X.

Definition 3.115 (Injective super-composability). OX has injective
super-composability, if

OX(f) ◦ s ⊃ OY(f ◦ s), (3.116)

for all f ∈ RX and injective s : Y → X.

Note 3.117 (Super-composability does not make sense without
injectivity). Let s : Y → X be a positive constant; s(y) = c for all y ∈ Y ,
and some c ∈ R>0. Then OX(f) ◦ s = {s}, and OY(f ◦ s) = OY(c). Let
g ∈ OY(c) \ {s}. Then g 6∈ OX(f) ◦ s = {s}. �

Algorithm 17 An algorithm to demonstrate injective composability. We
assume that F does not consume any resources.
1: procedure H(x)
2: return G(F (x))
3: end procedure

Example 3.118 (Demonstration of injective composability). Con-
sider Algorithm 17, H : X � Z, which decomposes into two sub-algorithms
F : X � Y and G : Y � Z such that F is injective and H = G◦F . Denote
the cost functions of H, F and G by h, f ∈ RX and g ∈ RY , respectively.
Suppose f = 0. Then

h = g ◦ F + f

= g ◦ F.
(3.119)
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By injective composability,

OX(h) = OX(g ◦ F )
= OY(g) ◦ F.

(3.120)

That is, if f = 0, and we know OY(g), then the complexity of H is given
by OX(h) = OY(g) ◦ F . 4

Definition 3.121 (Extensibility). OX has extensibility, if

OX(f) ◦ [X × Y ] ⊂ OX×Y(f ◦ [X × Y ]), (3.122)

for all X,Y ∈ U and f ∈ RX .

Note 3.123. Extensibility is a special case of sub-composability. �

Definition 3.124 (Subset-summability). O has subset-summability, if

OX

 ∑
(y,z)∈Sx

a(z)f(y)

 ⊂ OX

 ∑
(y,z)∈Sx

a(z)f(y)

, (3.125)

for all X,Y, Z ∈ U , S : X → P̂(Y × Z), a ∈ RZ , f ∈ RY , and f ∈ OY
(
f
)
.

Algorithm 18 An algorithm to demonstrate subset-summability.
1: procedure G(x)
2: α := 0
3: for (y, z) ∈ Sx do
4: α := α · F(y)
5: end for
6: return α
7: end procedure
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Example 3.126 (Demonstration of subset-summability). Consider
Algorithm 18, G : X � Z, which for x ∈ X sums F : Y � Z over
Sx ∈ P̂(Y × Z). Let the algorithms F and G take f ∈ RY and g ∈ RX
operations, respectively. Then

g(x) =
∑
y∈Sx

f(y). (3.127)

Suppose we have shown that f ∈ OY
(
f
)
. By subset-summability,

OX(g) = OX

∑
y∈Sx

f(y)


⊂ OX

∑
y∈Sx

f(y)

.
(3.128)

That is, if f has an upper bound of f , then we can construct an upper
bound of g from f . Suppose we have also shown that f ∈ OY(f) — i.e.
f ∈ ΘY

(
f
)
. Then

OX(g) = OX

∑
y∈Sx

f(y)

. (3.129)

4

Note 3.130 (Factor a in subset-summability). Example 3.126 does
not make use of the factor a in subset-summability. Such general sums
occur naturally in the analysis of recursive algorithms; see Appendix F.

�
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Chapter 4

Characterization of the
O-notation

In this chapter we show that the primitive properties are equivalent to the
definition of O-notation as linear dominance.

4.1 Linear dominance is sufficient

In this section we will show the following theorem:

Theorem 4.1 (Linear dominance has primitive properties). Let
OX : RX → P(RX) be defined by g ∈ OX(f) if and only if

∃c ∈ R>0 : g ≤ cf, (4.2)

for all f, g ∈ RX , and all X ∈ U , where the universe U is the class of all
sets. Then O satisfies the primitive properties.

Proof. The result follows directly from the Lemmas in this section.

We shall apply the following lemma repeatedly without mentioning it.

Lemma 4.3 (Simplification lemma). Let X ∈ U , I be a finite set,
Xi ⊂ X, fi ∈ RXi , and f̂i ∈ OXi(fi), for all i ∈ I. Then there exists
c ∈ R>0, such that f̂i ≤ cfi, for all i ∈ I.
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Proof. Since f̂i ∈ OXi(fi), there exists ci ∈ R>0, such that f̂i ≤ cifi, for all
i ∈ I. Let c = max{ci : i ∈ I}. Then f̂i ≤ cfi, for all i ∈ I.

Lemma 4.4 (Linear dominance has order-consistency). Let X ∈ U ,
and f, g ∈ RX . Then

f ≤ g =⇒ f ∈ OX(g). (4.5)

Proof. Since f ≤ 1g, it holds that f ∈ OX(g).

Lemma 4.6 (Linear dominance has transitivity). Let X ∈ U , and
f, g, h ∈ RX . Then

(f ∈ OX(g) and g ∈ OX(h)) =⇒ f ∈ OX(h). (4.7)

Proof. Let f ∈ OX(g), and g ∈ OX(h). Then there exists c ∈ R>0, such that
f ≤ cg and g ≤ ch. It follows that f ≤ c2h. Therefore f ∈ OX(h).

Lemma 4.8 (Linear dominance has locality). Let X ∈ U , f, g ∈ RX ,
and C ⊂ P(X) be a finite cover of X. Then

(∀D ∈ C : (f |D) ∈ OD(g|D)) =⇒ f ∈ OX(g). (4.9)

Proof. Assume (f |D) ∈ OD(g|D), for all D ∈ C. Then there exist c ∈ R>0

such that (f |D) ≤ c(g|D), for all D ∈ C. Since C covers X, f ≤ cg. Therefore
f ∈ OX(g).

Lemma 4.10 (Linear dominance has one-separation).

n 6∈ ON>0(1). (4.11)

Proof. For all c ∈ R>0, there exists n ∈ N>0 — for example n = dce+ 1 — such
that n > c1. Therefore n 6∈ ON>0(1).
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Lemma 4.12 (Linear dominance has scale-invariance). Let X ∈ U ,
f ∈ RX , and α ∈ R>0. Then OX(f) ⊂ OX(αf).

Proof. Assume f̂ ∈ OX(f). Then there exists c ∈ R>0, such that

f̂ ≤ cf
= (c/α)(αf).

(4.13)

Therefore f̂ ∈ OX(αf).

Lemma 4.14 (Linear dominance has sub-homogeneity in N and
sub-homogeneity in 1/N>0). Let X ∈ U , and f, u ∈ RX . Then

uOX(f) ⊂ OX(uf). (4.15)

Proof. Let f̂ ∈ OX(f). Then there exists c ∈ R>0, such that f̂ ≤ cf . This
implies uf̂ ≤ cuf . Therefore uf̂ ∈ OX(uf); OX has sub-homogeneity. Since
N ⊂ R≥0, OX has sub-homogeneity in N. Since 1

N>0 ⊂ R>0, OX has sub-
homogeneity in 1/N>0.

Lemma 4.16 (Linear dominance has sub-composability). Let X ∈
U , f ∈ RX , and s : Y → X. Then

OX(f) ◦ s ⊂ OY(f ◦ s). (4.17)

Proof. Let f̂ ∈ OX(f). Then there exists c ∈ R>0, such that f̂ ≤ cf . This
implies f̂ ◦ s ≤ c(f ◦ s). Therefore f̂ ◦ s ∈ OX(f ◦ s).

4.2 Linear dominance is necessary

In this section we will show the following theorem.

Theorem 4.18 (Primitive properties imply linear dominance).
Suppose O has order-consistency, transitivity, one-separation, locality, scale-
invariance, sub-homogeneity in N, sub-homogeneity in 1/N>0, and sub-
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composability. Then

f ∈ OX(g) ⇐⇒ ∃c ∈ R>0 : f ≤ cg. (4.19)

To prove this result, we will use some of the results from Appendix C.

Lemma 4.20 (OX(1) equals the bounded functions). Suppose O has
order-consistency, transitivity, one-separation, locality, scale-invariance,
and injective sub-composability. Then

OX(1) =
{
f ∈ RX : ∃c ∈ R>0 : f ≤ c

}
, (4.21)

provided X 6= ∅.

Proof.
Implied properties

O has injective super-composability by [Injective super-composability is im-
plied] (C.13), and orderness by [Orderness is implied] (C.10).
⊂

Assume f ∈ OX(1) such that f is unbounded. Then for every n ∈ N>0 there
exists xn ∈ X such that f(xn) ≥ n. Therefore, let s : N>0 → X be injective such
that n ≤ (f ◦ s)(n), for all n ∈ N>0. By orderness, OX(f) ⊂ OX(1). By order-
consistency, order-consistency and transitivity, injective super-composability,
and injective sub-composability,

(n 7→ n) ∈ ON>0(n)
⊂ ON>0(f ◦ s)
⊂ OX(f) ◦ s
⊂ OX(1) ◦ s
⊂ ON>0(1 ◦ s)
= ON>0(1).

(4.22)

This contradicts O having one-separation. Therefore f is bounded, which is
equivalent to ∃c ∈ R>0 : f ≤ c.
⊃
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Assume ∃c ∈ R>0 : f ≤ c. By order-consistency, f ∈ OX(c). By scale-
invariance, f ∈ OX(1).

Lemma 4.23 (O-notation for positive functions). Suppose OX has
order-consistency, transitivity, scale-invariance, sub-homogeneity in N, and
sub-homogeneity in 1/N>0. Then

f ∈ OX(g) ⇐⇒ f/g ∈ OX(1), (4.24)

for all f, g ∈ RX such that g > 0.

Proof. OX has sub-homogeneity by [Sub-homogeneity is implied] (C.4).
=⇒

By sub-homogeneity,
f ∈ OX(g)

=⇒ f/g ∈ OX(g)/g
=⇒ f/g ∈ OX(g/g)
=⇒ f/g ∈ OX(1).

(4.25)

⇐=

By sub-homogeneity,
f/g ∈ OX(1)

=⇒ f ∈ OX(1)g
=⇒ f ∈ OX(g).

(4.26)

Theorem 4.27 (Primitive properties imply linear dominance).
Suppose O has order-consistency, transitivity, one-separation, locality, scale-
invariance, sub-homogeneity in N, sub-homogeneity in 1/N>0, and sub-
composability. Then

f ∈ OX(g) ⇐⇒ ∃c ∈ R>0 : f ≤ cg. (4.28)

Proof.
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Implied properties

OX has sub-restrictability by [Sub-restrictability is implied] (C.18), and zero-
triviality by [Zero-triviality is implied] (C.11).
Positive subset

Let G :=←−g
(
R>0) and G := X \G. Then

(f |G) ∈ OG(g|G)

⇐⇒ (f |G)
(g|G) ∈ OG(1)

⇐⇒ ∃c ∈ R>0 : (f |G)
(g|G) ≤ c

⇐⇒ ∃c ∈ R>0 : (f |G) ≤ c(g|G)

(4.29)

where we used [O-notation for positive functions] (4.23) and [OX(1) equals
the bounded functions] (4.20).
Zero subset

By zero-triviality, (
f |G

)
∈ OG

(
g|G
)

⇐⇒
(
f |G

)
= 0.

(4.30)

Whole set

By locality and sub-restrictability,

f ∈ OX(g)
⇐⇒ (f |G) ∈ OG(g|G) and

(
f |G

)
∈ OG

(
g|G
)

⇐⇒
(
∃c ∈ R>0 : (f |G) ≤ c(g|G)

)
and

(
f |G

)
= 0

⇐⇒ ∃c ∈ R>0 : f ≤ cg.

(4.31)

4.3 Minimal properties

In this section we will show that, excluding locality, a given primitive property
can not be deduced from the remaining primitive properties.
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≤ T 1 α ∗ / ◦
O· 7 H.21 XH.23 XH.31 XH.26 XH.32 XH.32 XH.35
O! XH.40 7 H.42 XH.49 XH.45 XH.51 XH.51 XH.55
O XD.6 XD.10 7 G.4 XD.20 XD.23 XD.23 XG.5
O≤ XH.3 XH.4 XH.12 7 H.7 XH.13 XH.13 XH.16
O XG.61 XG.63 XG.70 XG.72 7 G.82 XG.85 XG.76
O∧ XH.62 XH.64 XH.75 XH.70 XH.81 7 H.84 XH.87
O XD.6 XD.10 XG.14 XD.20 XD.23 XD.23 7 G.18
O XD.6 XD.10 X4.10 XD.20 XD.23 XD.23 X4.16

Table 4.1: The pre-primitive properties fulfilled by each candidate definition.
The abbreviations are: ≤ for order-consistency, T for transitivity, 1 for one-sepa-
ration, α for scale-invariance, ∗ for sub-homogeneity in N, / for sub-homogeneity
in 1/N>0, and ◦ for sub-composability

Definition 4.32 (Minimal set of axioms). A set S of axioms isminimal,
if no axiom in S can be proved from the other axioms in S.

Note 4.33 (Proving minimality). The minimality of an axiom set S
can be proved by showing that for any axiom A ∈ S, there is a model of
S \ {A} in which A holds and another model of S \ {A} in which A does
not hold. �

Note 4.34 (Locality is implied). Locality is implied by the other prim-
itive properties by [Locality is implied] (C.31); primitive properties are
not minimal. �

Note 4.35 (Pre-primitive properties). The pre-primitive properties
are the primitive properties, with locality excluded. �

Theorem 4.36 (Pre-primitive properties are minimal). Pre-primitive
properties form a minimal set of axioms for linear dominance.
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Proof. That pre-primitive properties are equivalent to the definition of O-
notation as linear dominance follows from [Locality is implied] (C.31), [Prim-
itive properties imply linear dominance] (4.27), and [Linear dominance has
primitive properties] (4.1).

That pre-primitive properties are minimal follows from Table 4.1, following
Note 4.33.
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Working with the O-notation

In this section we adopt the linear dominance O-notation as the O-notation
and develop more refined tools for working with it. These tools are useful in a
day-to-day basis for an algorithm analyst, because they provide shortcuts over
tedious derivations. A cheat sheet for working with the O-notation is given in
Figure 5.1 — it is a simplified version of Figure 3.

5.1 Surprising aspects

In this section we will look at some aspects of O-notation which at first may
seem surprising.

Algorithm 19 A family of algorithms, parametrized by i ∈ N, which take as
input n ∈ N, and output n.
1: procedure identityi(n)
2: if n < i then
3: return n
4: end if
5: return n+ 0
6: end procedure

Example 5.1 (Infinite descent). Consider a family of algorithms in
Algorithm 19, for which there is a separate implementation for each i ∈ N.
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Name Property
Order-consistency f ≤ g =⇒ f ∈ OX(g)
Reflexivity f ∈ OX(f)
Transitivity (f ∈ OX(g) and g ∈ OX(h)) =⇒ f ∈ OX(h)
Orderness f ∈ OX(g) ⇐⇒ OX(f) ⊂ OX(g)
Zero-separation 1 6∈ ON>0(0)
One-separation n 6∈ ON>0(1)
Zero-triviality OX(0) = {0}
Scale-invariance OX(αf) = OX(f)
Bounded translation-inv. OX(f + β + α) = OX(f + β)
Power-homogeneity OX(f)α = OX(fα)
Additive consistency uOX(f) + vOX(f) = (u+ v) OX(f)
Multiplicative consistency OX(f)u · OX(f)v = OX(f)u+v

Maximum consistency max(OX(f),OX(f)) = OX(f)
Locality (∀D ∈ C : (f |D) ∈ OD(g|D)) =⇒ f ∈ OX(g)
Homogeneity uOX(f) = OX(uf)
Multiplicativity OX(f) · OX(g) = OX(fg)
Restrictability (OX(f)|D) = OD(f |D)
Additivity OX(f) + OX(g) = OX(f + g)
Summation rule OX(f + g) = OX(max(f, g))
Maximum rule max(OX(f),OX(g)) = OX(max(f, g))
Maximum-sum rule max(OX(f),OX(g)) = OX(f) + OX(g)
Sub-composability OX(f) ◦ s ⊂ OY(f ◦ s)
Injective composability OX(f) ◦ s = OY(f ◦ s) (s injective)
Extensibility OX(f) ◦ [X × Y ] ⊂ OX×Y(f ◦ [X × Y ])
Subset-summability OX

(∑
(y,z)∈Sx

a(z)h(y)
)
⊂

OX

(∑
(y,z)∈Sx

a(z)h(y)
)

Table 5.1: Cheat sheet for O-notation. Here X,Y, Z ∈ U , f, g, u, v ∈ RX ,
h ∈ RY , h ∈ OY

(
h
)
, α, β ∈ R>0, D ⊂ X, s : Y → X, S : X → P̂(Y × Z),

a ∈ RZ , and C ⊂ P(X) is a finite cover of X.
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Suppose we are only interested in the number of performed additions. The
cost functions are given by fi ∈ RN such that

fi(n) =
{

1, n ≥ i,
0, otherwise,

(5.2)

where i ∈ N. Then
f0 ∈ ΘN(1), (5.3)

and
fi+1 ∈ oN(fi), (5.4)

for all i ∈ N. That is, with linear dominance, the functions fi form a
decreasing sequence of functions. This is how it should be: it is fundamen-
tally different to use resources — no matter how small an amount — than
to not use resources at all. 4

Example 5.5 (Same expressions, different functions). It may be
surprising that 1/x ∈ ON>0(1), but 1/x 6∈ OR>0(1). The function 1/x
seems to be the same — why don’t they belong to the same O-sets?

A function is a triple, which consists of the domain, the codomain, and
the rule connecting each element of the domain to exactly one element
of the codomain. An expression such as 1/x is ambiguous as a function
definition, because it does not specify the domain and the codomain. The
two occurrences of 1/x here are different functions, and need not share any
other property apart from being equal on N>0.

In our example, 1/x on N>0 is bounded, while 1/x on R>0 is unbounded.
4

5.2 Master theorems

Master theorems are popular for solving recurrence equations arising in the
analysis of divide-and-conquer algorithms [2] — up to O-equivalence. We state
the theorems here, and prove them in Appendix F.

Definition 5.6 (Master function over integers). Let a ∈ R≥1, b ∈
R≥2, d ∈ R>0, and F ∈ RN≥1 . A master function over integers is a function
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T ∈ RN≥1 defined by the recurrence equation

T (n) =
{
aT (dn/be) + F (n), n ≥ b,
d, n < b.

(5.7)

The set of such functions is denoted byMI(a, b, d, F ).

Theorem 5.8 (Master theorem over integers). Let T ∈MI(a, b, d, F )
be a Master function over integers, and F ∈ ON≥1(nc), where c ∈ R≥0.
Then

logb(a) < c =⇒ T ∈ ON≥1(nc),
logb(a) = c =⇒ T ∈ ON≥1(nc logb(bn)),

logb(a) > c =⇒ T ∈ ΘN≥1

(
nlogb(a)

)
.

(5.9)

If F ∈ ΘN≥1(nc), then each ON≥1 can be replaced with ΘN≥1 .

Definition 5.10 (Master function over reals). Let a ∈ R≥1, b ∈ R>1,
d ∈ R>0, and f ∈ RR≥1 . A master function over reals is a function t ∈ RR≥1

defined by the recurrence equation

t(x) =
{
at(x/b) + f(x), x ≥ b,
d, x < b.

(5.11)

The set of such functions is denoted byMR(a, b, d, f).

Theorem 5.12 (Master theorem over reals). Let t ∈ MR(a, b, d, f)
be a Master function over reals, and f ∈ OR≥1(xc), where c ∈ R≥0. Then

logb(a) < c =⇒ t ∈ OR≥1(xc),
logb(a) = c =⇒ t ∈ OR≥1(xc logb(bx)),

logb(a) > c =⇒ t ∈ ΘR≥1

(
xlogb(a)

)
.

(5.13)

If f ∈ ΘR≥1(nc), then each OR≥1 can be replaced with ΘR≥1 .
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5.3 O-mappings

Definition 5.14 (O-mapping). A function T : RX → RY is an O-
mapping, if −→

T (OX(f)) ⊂ OY(T (f)), (5.15)

for all f ∈ RX .

Theorem 5.16 (O-mapping by linear dominance). Let T : RX → RY .
Then T is an O-mapping if and only if(

∃c ∈ R>0 : f ≤ cg
)

=⇒
(
∃d ∈ R>0 : T (f) ≤ dT (g)

)
(5.17)

for all f, g ∈ RX .

Proof. By definition.

Example 5.18 (Non-negative translation is an O-mapping). Let
T : RX → RX be such that T (f) = f + α, where α ∈ R≥0. Let f, g ∈ RX
be such that f ∈ OX(g). Then there exists c ∈ R>0 such that f ≤ cg, and

T (f) = f + α

≤ cg + α

≤ max(c, 1)(g + α)
= max(c, 1)T (g).

(5.19)

Therefore T is an O-mapping. The inverse of T does not exist, since it
does not always hold that f − α ≥ 0. 4

Example 5.20 (Composition is an O-mapping). Let T : RX → RY
be such that T (f) = f ◦ s, where s : Y → X. Let f, g ∈ RX be such that
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f ∈ OX(g). Then there exists c ∈ R>0 such that f ≤ cg, and

T (f) = f ◦ s
≤ (cg) ◦ s
= c(g ◦ s)
= cT (g).

(5.21)

Therefore T is an O-mapping. 4

Theorem 5.22 (Subset-sum is an O-mapping). Let X,Y, Z ∈ U ,
S : X → P̂(Y × Z), a ∈ RZ , f ∈ RY , and f̂ ∈ OX(f). Let T : RY → RX
be such that

T (f) =

x 7→ ∑
(y,z)∈Sx

a(z)f(y)

. (5.23)

Then T is an O-mapping.

Proof. There exists c ∈ R>0 such that f̂ ≤ cf , and so

T (f̂) =

x 7→ ∑
(y,z)∈Sx

a(z)f̂(y)


≤

x 7→ ∑
(y,z)∈Sx

a(z)(cf)(y)


= c

x 7→ ∑
(y,z)∈Sx

a(z)f(y)


= cT (f).

(5.24)

Therefore T is an O-mapping.

5.4 O-equalities

Definition 5.25 (O-residual). A function T̂ : RY → RX is an O-residual
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of T : RX → RY , if

g ∈ OY(T (f)) ⇐⇒ T̂ (g) ∈ OX(f), (5.26)

for all f ∈ RX , and g ∈ RY .

Definition 5.27 (O-residuated function). A function f : X → Y is
O-residuated, if it has an O-residual.

Note 5.28. The definitions given here are special cases of the theory of
partitioned sets — given in Appendix I — and of the theory of preordered
sets — given in Appendix J, formulated in terms of O-sets. �

Definition 5.29 (Strong O-equality). A strong O-equality is a surjective
O-residuated function T : RX → RY .

Theorem 5.30 (Strong O-equality rule). Let T : RX → RY be a strong
O-equality. Then

T (OX(f)) = OY(T (f)), (5.31)

for all f ∈ RX .

Proof. This is proved in [Transpose-residuated surjective function preserves
down-sets] (J.97).

Note 5.32 (O-equality). We call the O-equality strong, because we do
not know how to neatly characterize the preservation of the O-set under a
mapping T ; such functions would be called O-equalities. �

Theorem 5.33 (Strong O-equality by linear dominance). Suppose
T : RX → RY . Then T is a strong O-equality if and only if there exists
T̂ : RY → RX such that

T (T̂ (g)) = g, (5.34)
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and (
∃c ∈ R>0 : g ≤ cT (f)

)
⇐⇒

(
∃d ∈ R>0 : T̂ (g) ≤ df

)
, (5.35)

for all f ∈ RX , and g ∈ RY .

Proof. By definition of linear dominance and [Partition-surjectivity is equiva-
lent to having a right p-inverse] (I.41), whose special case says that surjectivity
is equivalent to having a right-inverse.

Example 5.36 (Injective composition is a strong O-equality). Let
s : Y → X be injective, and T : RX → RY be such that T (f) = f ◦ s.
Let ŝ : Y → −→s (Y ) be such that ŝ(y) = s(y). Then ŝ is bijective, and
T (f) = f ◦ ŝ. Let T̂ : RY → RX be such that T̂ (g) =

〈
g ◦ ŝ−1〉, where 〈·〉

is a domain extension of a function from −→s (Y ) to X by mapping the new
elements to zeros. Let f ∈ RX , g ∈ RY , and c ∈ R>0. Then T (T̂ (g)) = g,
and

g ≤ cT (f)
⇐⇒ g ≤ c(f ◦ ŝ)
⇐⇒

〈
g ◦ ŝ−1〉 ≤ cf

⇐⇒ T̂ (g) ≤ cf.

(5.37)

Therefore T is a strong O-equality. 4

Example 5.38 (Positive power is a strong O-equality). Let T : RX →
RX be such that T (f) = fα, where α ∈ R>0. Let T̂ : RX → RX be such
that T̂ (g) = g1/α. Let f, g ∈ RX , and c ∈ R>0. Then T (T̂ (g)) = g, and

g ≤ cT (f)
⇐⇒ g ≤ cfα

⇐⇒ g1/α ≤ c1/αf

⇐⇒ T̂ (g) ≤ c1/αf.

(5.39)

Therefore T is a strong O-equality. 4
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Example 5.40 (Positive multiplication is a strong O-equality). Let
T : RX → RX be such that T (f) = αf , where α ∈ R>0. Let T̂ : RX → RX
be such that T̂ (g) = g/α. Let f, g ∈ RX , and c ∈ R>0. Then T (T̂ (g)) = g,
and

g ≤ cT (f)
⇐⇒ g ≤ cαf
⇐⇒ g/α ≤ cf

⇐⇒ T̂ (g) ≤ cf.

(5.41)

Therefore T is a strong O-equality. 4
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Local linear dominance

In this section we will study a class of candidate definitions for the O-notation,
the local linear dominances. These definitions work over all universes — unless
a specific version makes additional assumptions.

6.1 Definition

In this section we provide the definition of local linear dominance. We prove its
properties in Appendix D.

Definition 6.1 (Filter basis). A set F ⊂ P(X) is a filter basis in a set
X if it is

Name Universe F(X) Reference
O Trivial sets {∅} [12]
O Cofinite sets P(X) [8], [12]
O Asymptotic

⋃
d∈N P

(
Rd
) {

X≥y : y ∈ Rd
}

[1]
O Co-asymptotic

⋃
d∈N P

(
Rd
) {

(X \X<y) : y ∈ Rd
}

[2]
O Full sets {X} [12]

Table 6.1: Example versions of local linear dominance. Here U is the universe,
X ∈ U , and F(X) is the filter basis in X. The name is used to replace the
word ‘local’, as in asymptotic linear dominance.
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non-empty
F 6= ∅,

⊂-directed
∀A,B ∈ F ,∃C ∈ F : C ⊂ A and C ⊂ B.

Note 6.2 (Filter basis may not be proper). Some authors require
a filter basis to be proper — ∅ 6∈ F(X). We allow a filter basis to be
non-proper. �

Definition 6.3 (Local linear dominance). Local linear dominance O
on X ∈ U is defined by g ∈ OX(f) if and only if

∃c ∈ R>0,∃A ∈ F(X) : (g|A) ≤ c(f |A), (6.4)

where {F(X) ⊂ P(X) : X ∈ U} is a class of filter bases with induced sub-
structure:

F(D) = {A ∩D : A ∈ F(X)}, (6.5)

for all D ⊂ X.

Note 6.6 (Versions). Each choice of filter bases corresponds to a version
of local linear dominance. Some such versions are given in Table 6.1. �

Note 6.7 (Filter basis and limits). A filter basis in X is the minimal
amount of structure needed to make sense of the limit of a function f ∈ RX .
In fact, a local linear dominance can be characterized by a ratio-limit. �

Note 6.8 (Motivation). We have already shown in Chapter 4 that only
one instance of local linear dominance works for algorithm analysis. Why
study local linear dominances? There are two reasons.

First, local linear dominance is commonly used for local function ap-
proximation in various fields of mathematics. Such results may indirectly
find their way into a complexity analysis, in which case we need a way
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transfer such results to the algorithmic side. This can be done using the
tools provided in Section 6.2.

Second, local linear dominances help to train the intuition behind the
primitive properties, because they provide successively better approxima-
tions to linear dominance. This is shown in Appendix D. �

Note 6.9 (Eventually non-negative). A function f : X → R is even-
tually non-negative, if there exists A ∈ F(X), such that (f |A) ≥ 0. It is
possible to generalize the definition of local linear dominance to functions
which are eventually non-negative. When F(X) = {X}, eventually non-
negative reduces to non-negative. �

Theorem 6.10 (O is almost equal to O for cofinite filter sets).
Suppose |X \A| <∞, for all A ∈ F(X). Then

OX(g) = OX(g), (6.11)

for all g ∈ RX>0.

Example 6.12 (Linear dominance from asymptotic linear domi-
nance). Let f ∈ RN>0 be such that f(n) = n2|sin(n)| + n + 3. It holds
that f ∈ ON>0

(
n2) by Example 6.24. Since n2 > 0, and

∣∣N>0 \ N≥y
∣∣ <∞,

for all y ∈ R, it holds that f ∈ ON>0
(
n2) by [O is almost equal to O for

cofinite filter sets] (D.59). 4

6.2 Limit theorems

In this section we show how to transfer a result from a local linear dominance
O to linear dominance O. First, the filter bases associated with O make it
possible to define the concepts of limit superior, limit inferior, and limit. These
limits can then be used to characterize the O-notation. Second, f ∈ OX(g) can
sometimes be used to deduce f ∈ OX(g). The proofs are given in Appendix E.
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Note 6.13 (Related notations for local linear dominance). We shall
denote the related notations corresponding to O by Ω, ω, Θ, and o. �

Definition 6.14 (Limit superior and limit inferior under a filter
basis). Let F ⊂ P(X) be a filter basis in a set X. Then

lim sup
F

f := inf
{

sup
−→
f (A) : A ∈ F

}
,

lim inf
F

f := sup
{

inf
−→
f (A) : A ∈ F

}
,

(6.15)

for all f ∈ RX .

Note 6.16 (Existence of limit superior and limit inferior). The
lim sup and lim inf are called the limit superior and the limit inferior,
respectively. By the completeness of R = R ∪ {−∞,+∞}, both of them
are well-defined as a number in R. �

Definition 6.17 (Limit under a filter basis). The limit of f ∈ RX
under a filter basis F ⊂ P(X) is

lim
F
f = c, (6.18)

whenever lim supF f = lim infF f = c ∈ R.

Note 6.19 (Division by zero and infinity). In this section, we use the
conventions that α/0 =∞ ∈ R, for all α ∈ R>0, and that β/∞ = 0, for all
β ∈ R. �

Theorem 6.20 (Relation between ratio-limits).

lim sup
F(F )

(f |F )
(g|F ) = 1/ lim inf

F(F )

(g|F )
(f |F ) , (6.21)
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for all f, g ∈ RX , where F =
←−
f
(
R>0).

Theorem 6.22 (O by a limit).

lim sup
F(F )

(f |F )
(g|F ) <∞ ⇐⇒ f ∈ OX(g), (6.23)

for all f, g ∈ RX , where F =
←−
f
(
R>0).

Example 6.24 (Asymptotic linear dominance from a limit in N>0).
Consider asymptotic linear dominance ON>0 . Let f ∈ RN>0 be such that
f(n) = n2|sin(n)|+ n+ 3. Since f(n) > 0, and

lim sup
F(N>0)

f(n)
n2 = lim sup

n→∞

f(n)
n2 = 1, (6.25)

it holds that f ∈ ON>0
(
n2) by [O by a limit] (E.21) 4

Theorem 6.26 (Ω by a limit).

lim inf
F(G)

(f |G)
(g|G) > 0 ⇐⇒ f ∈ ΩX(g), (6.27)

for all f, g ∈ RX , where G =←−g
(
R>0).

Theorem 6.28 (o by a limit).(
lim sup
F(F )

(f |F )
(g|F ) <∞ and lim inf

F(G)

(f |G)
(g|G) = 0

)
⇐⇒ f ∈ oX(g), (6.29)

for all f, g ∈ RX , where F =
←−
f
(
R>0) and G =←−g

(
R>0).
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Example 6.30 (Co-asymptotic linear dominance from a limit in
N2). Consider co-asymptotic linear dominance ON2 . Let f ∈ RN2 be such
that f(m,n) = (m+ n+ 1) exp(−mn). Since f(m,n) > 0, m+ n+ 1 > 0,
and

lim sup
F(N2)

f(m,n)
m+ n+ 1 = 1,

lim inf
F(N2)

f(m,n)
m+ n+ 1 = 0,

(6.31)

it holds that f ∈ oN2(m+ n+ 1) by [o by a limit] (E.30). 4

Example 6.32 (Sufficient limit-condition for o). In particular,

lim sup
F(F )

(f |F )
(g|F ) = 0 =⇒ f ∈ oX(g), (6.33)

but this is only a sufficient condition. 4

Theorem 6.34 (Traditional oX by a limit).

∀ε ∈ R>0 : ∃A ∈ F(X) : (f |A) ≤ ε(g|A)

⇐⇒ lim sup
F(F )

(f |F )
(g|F ) = 0,

(6.35)

for all f, g ∈ RX , where F =
←−
f
(
R>0).

Example 6.36 (Asymptotic linear dominance from a limit in N2).
Consider asymptotic linear dominance ON2 . Let f ∈ RN2 be such that
f(m,n) = (m+ n+ 1) exp(−mn). Since f > 0, and

lim sup
F(N2)

f

1 = 0, (6.37)

it holds that f ∈ oN2(1) by [o by a limit] (E.30). 4
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Theorem 6.38 (ω by a limit).(
lim sup
F(F )

(f |F )
(g|F ) =∞ and lim inf

F(G)

(f |G)
(g|G) > 0

)
⇐⇒ f ∈ ωX(g), (6.39)

for all f, g ∈ RX , where F =
←−
f
(
R>0) and G =←−g

(
R>0).

Example 6.40 (Sufficient limit-condition for ω). In particular,

lim inf
F(G)

(f |G)
(g|G) =∞ =⇒ f ∈ ωX(g), (6.41)

but this is only a sufficient condition. 4
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Chapter 7

Conclusion

This paper provides a rigorous mathematical foundation for the O-notation and
its related notations in algorithm analysis. To find the appropriate definition,
an exhaustive list of desirable properties was constructed, and their relations
were studied. This revealed that the desirable properties can be reduced to 8
primitive properties which imply the others. It was shown that these primitive
properties are equivalent to the definition of the O-notation as linear dominance.
Master theorems were shown to hold for linear dominance, and O-mappings
were defined for easily proving new rules for the O-notation. Other existing
definitions were studied and compared to each other based on the primitive
properties. Some misuses of the O-notation from the literature were pointed
out.

We hope this paper to improve the teaching of the topic, and to improve
the communication between computer scientists. Computer scientists have used
the O-notation correctly intuitively. That intuition is now backed by a solid
mathematical foundation.
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Appendix A

Notation

In this section we provide the definitions for the used notation. This is to
avoid ambiguities arising from differing conventions, such as a differing order of
composition of functions. We will assume the Zermelo-Fraenkel set-theory with
the axiom of choice, abbreviated ZFC.

We refer to theorems in the form [Linear dominance has primitive prop-
erties] (4.1) — a short summary followed by a number. We believe this is
more useful than Theorem 4.1 when studying the proofs. The numberings in
equations, definitions, theorems etc. share the same counter.

Definition A.1 (Numbers). The set of natural numbers, integers, and
real numbers are denoted by N = {0, 1, 2, ...}, Z, and R, respectively.

Definition A.2 (Subsets of a set). The set of subsets of a set X is
denoted by P(X).

Definition A.3 (Finite subsets of a set). The set of finite subsets of
a set X is denoted by

P̂(X) := {D ∈ P(X) : |D| <∞}. (A.4)
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Definition A.5 (Cofinite subsets of a set). The set of cofinite subsets
of a set X is denoted by

P(X) := {D ∈ P(X) : |X \D| <∞}. (A.6)

Definition A.7 (Cover of a set). A set C is a cover of a set X, if

X ⊂
⋃
C. (A.8)

Definition A.9 (Set of functions). The set of functions from a set X
to a set Y is denoted by X → Y , or alternatively by Y X .

Definition A.10 (Identity function). The identity function in a set X
is a function idX : X → X such that

idX(x) = x. (A.11)

Definition A.12 (Composition). The composition of g : Y → Z and
f : X → Y is (g ◦ f) : X → Z such that (g ◦ f)(x) = g(f(x)).

Definition A.13 (Restriction). The restriction of f : X → Y to D ⊂ X
is (f |D) : D → Y such that (f |D)(x) = f(x).

Definition A.14 (Inverse of a function). The inverse of a function
f : X → Y is f−1 : Y → X such that

f(f−1(y)) = y,

f−1(f(x)) = x,
(A.15)

for all x ∈ X, y ∈ Y .
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Definition A.16 (Image of a set under a function). The image of a
set S ⊂ X under a function f : X → Y is

−→
f (S) = {f(x) : x ∈ S}. (A.17)

Definition A.18 (Pre-image of a set under a function). The pre-
image of a set S ⊂ Y under a function f : X → Y is

←−
f (S) = {x ∈ X : f(x) ∈ S}. (A.19)

Definition A.20 (Increasing function). A function f : R≥0 → R≥0 is
increasing, if x ≤ y =⇒ f(x) ≤ f(y), for all x, y ∈ R≥0.

Example A.21 (Non-negative powers are increasing). Let f : R≥0 →
R≥0 be such that f(x) = xα, where α ∈ R≥0. Then f is increasing. 4

Definition A.22 (Class of sets). A class of sets is an unambiguous
collection of sets, which may or may not be a set itself.

Definition A.23 (Proper class). A proper class is a class of sets which
is not a set.

Example A.24 (Classes of sets). Every set is a class of sets. The
collection of all sets in ZFC is a proper class. 4

Note A.25 (Formalization of proper classes). The proper classes are
not formalizable in the ZFC set-theory. This is not a problem for two
reasons. First, everything in this paper can be carried through without
forming proper classes, by only referring to the class elements and their
relationships. Alternatively, we may adopt the von Neumann-Bernays-
Gödel set theory [22] — a conservative extension of ZFC which formalizes
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proper classes. �

Definition A.26 (Set of relations). The set of relations between a set
X and a set Y is denoted by X ↔ Y .

Definition A.27 (Reflexive relation). A relation ∼ : X ↔ X is reflex-
ive, if x ∼ x, for all x ∈ X.

Definition A.28 (Transitive relation). A relation ∼ : X ↔ X is tran-
sitive, if

x ∼ y and y ∼ z =⇒ x ∼ z, (A.29)

for all x, y, z ∈ X.

Definition A.30 (Preorder). A preorder in a set X is a reflexive and
transitive relation �X : X ↔ X.

Definition A.31 (Filtered set). Let X be a set, and ∼ : X ↔ X. Then

X∼y := {x ∈ X : x ∼ y}, (A.32)

for all y ∈ X.

Example A.33. R≥0 is the set of non-negative real numbers. 4

Definition A.34 (Indicator function). The indicator function of S ⊂ X
in a set X is a function [S]X : X → R≥0 such that

[S]X(x) =
{

1, x ∈ S,
0, x 6∈ S.

(A.35)
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Definition A.36 (Non-negative real-valued functions). We are specif-
ically interested in non-negative real-valued functions; we define

RX :=
(
X → R≥0), (A.37)

where X is a set.

Definition A.38 (Extension of a unary operator to functions). A
unary operator 	 : R≥0 → R≥0 is extended to functions f ∈ RX by

(	f)(x) = 	f(x), (A.39)

for all x ∈ X.

Definition A.40 (Extension of a binary operator to functions). A
binary operator ⊕ : R≥0 × R≥0 → R≥0 is extended to functions f, g ∈ RX
by

(f ⊕ g)(x) = f(x)⊕ g(x), (A.41)

for all x ∈ X.

Definition A.42 (Extension of a relation to functions). A relation
∼ : Y ↔ Y is extended to functions f, g : X → Y by

f ∼ g :⇐⇒ ∀x ∈ X : f(x) ∼ g(x). (A.43)

Example A.44. It holds that f ≥ 0, for all f ∈ RX . 4

Example A.45. Let x, y ∈ Rd, where d ∈ N>0. Then

x ≥ y ⇐⇒ ∀i ∈ d : xi ≥ yi. (A.46)

4
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Note A.47 (Relation-lifting pitfall). We adopted an implicit conven-
tion for lifting relations from sets to functions. This introduces a potential
for notational ambiguity.

Consider the formula f 6< g, where f, g : X → R. If the negation refers
to the original relation, then the formula is equivalent to

∀x ∈ X : f(x) ≥ g(x). (A.48)

However, if the negation refers to the lifted relation, then the formula is
equivalent to

∃x ∈ X : f(x) ≥ g(x). (A.49)

We avoid this ambiguity by not using negation for lifted relations. In
particular, we denote the filtered sets of co-asymptotic linear dominance
by (X \X<y) — not by X 6<y. �

Definition A.50 (Unary function for a set of functions). A unary
function 	 : RX → RY is extended to P(RX)→ P(RY ) by

	U = {	u : u ∈ U}. (A.51)

Definition A.52 (Binary function for sets of functions). A binary
function ⊕ : RX × RX → RY is extended to P(RX) × P(RX) → P(RY )
by

U ⊕ V = {u⊕ v : (u, v) ∈ U × V }. (A.53)

Definition A.54 (Iteration). The i:th iteration of f : X → X, where
i ∈ N, is f (i) : X → X such that

f (i)(x) =
{
x, i = 0,
f (i−1)(f(x)), i > 0.

(A.55)

Definition A.56 (Projection). A projection is a function [X × Y ] : X×
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Y → X such that
[X × Y ](x, y) = x. (A.57)

Definition A.58 (Universe). A universe is a class U of sets such that

1. N0 ∈ U ,

2. N1 ∈ U ,

3. ∀X ∈ U : P(X) ⊂ U ,

4. ∀X,Y ∈ U : X × Y ∈ U .

Definition A.59 (Sub-universe). A sub-universe of a universe U is a
subclass V ⊂ U which is also a universe.

Example A.60 (Examples of universes). The smallest universe is
given by ⋃

d∈N
P
(
Nd
)

(A.61)

Every universe contains this set as a sub-universe. The class of all sets is a
universe which is a proper class. 4

Definition A.62 (Computational problem). A computational problem
is a function P : X → Y , where X,Y ∈ U .

Definition A.63 (Set of algorithms). The set of algorithmsa which
solve a problem P : X → Y , under a given model of computation, is denoted
by A(P ). The set of all algorithms from X to Y is

X � Y =
⋃

P : X→Y
A(P ). (A.64)
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aWe will define the term algorithm formally in Section 2.1.

Definition A.65 (Composition of algorithms). The composition of
algorithms G : Y � Z and F : X � Y is the algorithm G ◦ F : X � Z,
which is obtained by using the output of F as the input of G.

Note A.66. We will sometimes use an algorithm F : X � Y as if it were
its induced function instead. �

Definition A.67 (Cost function of an algorithm). The cost function
of an algorithm F ∈ A(P ) is denoted by fF ∈ RX .
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Howell’s counterexample

In this section, we consider Howell’s counterexample [11], which shows that
asymptotic linear dominance O does not satisfy subset-summability.1

Example B.1 (Howell’s counterexample). Let X = N2, ĝ ∈ RX be
such that

ĝ(m,n) =
{

2n, m = 0,
mn, m > 0,

(B.2)

and g ∈ RX be such that g(m,n) = mn. Then

m∑
i=0

ĝ(i, n) = 2n +m(m+ 1)n/2

6∈ OX(m(m+ 1)n/2)

= OX

(
m∑
i=0

g(i, n)
)
.

(B.3)

4

Note B.4 (Howell’s requirements). To be precise, Howell required the
following properties from an O-notation:

1We have fixed the error of having the sum-index i run only to m− 1.

101



Appendix B. Howell’s counterexample

asymptotic refinement

OX(f) ⊂ OX(f) (B.5)

reflexivity

f ∈ OX(f) (B.6)

asymptotic order-consistency

(
∃y ∈ Nd :

(
f̂ |X≥y

)
≤
(
f |X≥y

))
=⇒ OX

(
f̂
)
⊂ OX(f) (B.7)

simple subset-summability
nk∑
i=0

ĝ(n1, . . . , nk−1, i, nk+1, . . . , nd) ∈

OX

(
nk∑
i=0

g(n1, . . . , nk−1, i, nk+1, . . . , nd)
)
,

(B.8)

where X = Nd, f̂ , f, g ∈ RX , ĝ ∈ OX(g), and k ∈ [1, d] ⊂ N. �

While Howell did not do so, we claim that any sensible definition of O-
notation must also satisfy scale-invariance:

OX(αf) = OX(f), (B.9)

for all f ∈ RX and α ∈ R>0. The following theorem then shows that Howell’s
result only concerns the O-notation.

Theorem B.10 (Howell’s definition is asymptotic dominance). O
has asymptotic order-consistency, scale-invariance, reflexivity, and asymp-
totic refinement. =⇒ O = O.
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Proof. By asymptotic order-consistency, scale-invariance, and reflexivity,

f̂ ∈ OX(f)

=⇒ ∃c ∈ R>0,∃y ∈ Nd :
(
f̂ |X≥y

)
≤ c
(
f |X≥y

)
=⇒ ∃c ∈ R>0 : OX

(
f̂
)
⊂ OX(cf)

=⇒ OX

(
f̂
)
⊂ OX(f)

=⇒ f̂ ∈ OX(f),

(B.11)

for all f, f̂ ∈ RX . Therefore OX(f) ⊂ OX(f). It follows from asymptotic
refinement that OX(f) = OX(f).
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Proofs of implied properties

In this section we will show that the primitive properties imply the rest of the
properties.

Definition C.1 (Composite property). A composite property is a prop-
erty which can be equivalently expressed in terms of primitive properties.

Proposition C.2 (Sub-homogeneity in Q≥0 is a composite). OX
has sub-homogeneity in Q≥0. ⇐⇒ OX has sub-homogeneity in N and sub-
homogeneity in 1/N>0.

Proof.
=⇒

Suppose OX has sub-homogeneity in Q≥0. Then OX has sub-homogeneity
in N, since N ⊂ Q≥0, and sub-homogeneity in 1/N>0, since (1/N>0) ⊂ Q>0.
⇐=

Suppose OX has sub-homogeneity in N and sub-homogeneity in 1/N>0. Let
f, g, u ∈ RX be such that −→u (X) ⊂ Q≥0. Then there exists p, q ∈ RX , such that
−→p (X) ⊂ N≥0, −→q (X) ⊂ N>0, and u = p/q. By sub-homogeneity in N and sub-
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Property ≤ T 1 α L ∗ / ◦ Th
Sub-homogeneity in Q≥0 X X C.2
Sub-homogeneity X X X X X C.4
Reflexivity X C.7
Zero-separation X X X X C.8
Orderness X X C.10
Zero-triviality X X X X X X C.11
Injective super-comp. X X X C.13
Sub-restrictability X C.18
Super-restrictability X X C.20
Scalar homogeneity X X X C.21
Super-homogeneity X X X X X X X X C.23
Sub-multiplicativity X X X X X C.25
Super-multiplicativity X X X X X X X X C.29
Additive consistency X X X X C.47
Maximum consistency X X X X C.50
Multiplicative cons. X X X X C.53
Maximum rule X X X X C.56
Summation rule X X X C.60
Maximum-sum rule X X X C.63
Additivity X X X X X C.66
Bounded translation-inv. X X X C.70
Extensibility X C.72
Subset-summability X X X X X X X X C.73

Table C.1: The primitive properties that imply a given non-primitive property.
The abbreviations are: ≤ for order-consistency, T for transitivity, 1 for one-
separation, α for scale-invariance, L for locality, ∗ for sub-homogeneity in N, /
for sub-homogeneity in 1/N>0, ◦ for sub-composability, and Th for theorem.
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homogeneity in 1/N>0,

f ∈ OX(g)
=⇒ pf ∈ OX(pg)

=⇒ p

q
f ∈ OX

(
p

q
g

)
=⇒ uf ∈ OX(ug).

(C.3)

Proposition C.4 (Sub-homogeneity is implied). OX has order-con-
sistency, transitivity, scale-invariance, sub-homogeneity in N, and sub-
homogeneity in 1/N>0. =⇒ OX has sub-homogeneity.

Proof. OX has sub-homogeneity in Q≥0 by [Sub-homogeneity in Q≥0 is a
composite] (C.2). Let f, g, u ∈ RX , and h : R≥0 → Q≥0 be such that

x ≤ h(x) ≤ 2x. (C.5)

By sub-homogeneity inQ≥0, order-consistency, transitivity, and scale-invariance,

f ∈ OX(g)
=⇒ (h ◦ u)f ∈ OX((h ◦ u)g)
=⇒ uf ∈ OX(2ug)
=⇒ uf ∈ OX(ug).

(C.6)

Proposition C.7 (Reflexivity is implied). OX has order-consistency
=⇒ OX has reflexivity.

Proof. By order-consistency, f ≤ f =⇒ f ∈ OX(f), for all f ∈ RX ; OX has
reflexivity.

Proposition C.8 (Zero-separation is implied). O has order-consis-
tency, transitivity, one-separation, and sub-homogeneity in N =⇒ O has
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zero-separation.

Proof. Suppose O does not have zero-separation, so that 1 ∈ ON>0(0). By
sub-homogeneity in N, n ∈ ON>0(0). By order-consistency, 0 ∈ ON>0(1). By
transitivity, n ∈ ON>0(1). This contradicts one-separation.

Proposition C.9 (Orderness is a composite). OX has reflexivity and
transitivity ⇐⇒ OX has orderness.

Proof.
=⇒

Assume f ∈ OX(g). Let f̂ ∈ OX(f). By transitivity, f̂ ∈ OX(g), and so
OX(f) ⊂ OX(g). Assume OX(f) ⊂ OX(g). By reflexivity, f ∈ OX(f). There-
fore f ∈ OX(g), and so OX has orderness.
⇐=

By orderness, f ∈ OX(f) ⇐⇒ OX(f) ⊂ OX(f). Therefore OX has reflexivity.
Let f ∈ OX(g), and g ∈ OX(h). By orderness, OX(g) ⊂ OX(h). Therefore
f ∈ OX(h), and so OX has transitivity.

Proposition C.10 (Orderness is implied). OX has order-consistency
and transitivity. =⇒ OX has orderness.

Proof. OX has reflexivity by [Reflexivity is implied] (C.7). OX has orderness
by [Orderness is a composite] (C.9).

Proposition C.11 (Zero-triviality is implied). O has order-consis-
tency, transitivity, one-separation, scale-invariance, sub-homogeneity in
N, sub-homogeneity in 1/N>0, and sub-composability. =⇒ O has zero-
triviality.

Proof. O has zero-separation by [Zero-separation is implied] (C.8) and sub-
homogeneity by [Sub-homogeneity is implied] (C.4). Suppose O does not have
zero-triviality, so that there exists f ∈ OX(0) such that f 6= 0. Then there
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exists y ∈ X such that f(y) = c, for some c ∈ R>0. Let s : N>0 → X be such
that s(x) = y. By sub-composability and sub-homogeneity,

f ∈ OX(0)
=⇒ f ◦ s ∈ OX(0) ◦ s
=⇒ c ∈ ON>0(0 ◦ s)
=⇒ 1 ∈ ON>0(0)/c
=⇒ 1 ∈ ON>0(0/c)
=⇒ 1 ∈ ON>0(0).

(C.12)

This contradicts zero-separation.

Proposition C.13 (Injective super-composability is implied). OX
has order-consistency, locality, and injective sub-composability for injective
s : Y → X. =⇒ OX has injective super-composability for s.

Proof. Let f ∈ RX , and s : Y → −→s (Y ) be such that s(y) = s(y). Then s is
bijective. Let ĝ ∈ OY(f ◦ s) and f̂ ∈ RX be such that

f̂(x) =
{(
ĝ ◦ s−1)(x), x ∈ −→s (Y ),

0, x 6∈ −→s (Y ).
(C.14)

Then ĝ = f̂ ◦ s; we show that f̂ ∈ OX(f). By injective sub-composability

f̂ |−→s (Y ) = ĝ ◦ s−1

∈ OY(f ◦ s) ◦ s−1

⊂ O−→s (Y)
(
f ◦ s ◦ s−1)

= O−→s (Y)(f |−→s (Y )).

(C.15)

By order-consistency,

f̂ |(X \ −→s (Y )) = 0 ∈ OX\−→s (Y)(f |(X \ −→s (Y ))). (C.16)

By locality,
f̂ ∈ OX(f). (C.17)

Therefore OX has injective super-composability for s.
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Proposition C.18 (Sub-restrictability is implied). OX has injective
sub-composability. =⇒ OX has sub-restrictability.

Proof. Let D ⊂ X, and s : D → X be such that s(x) = x. Then s is injective.
By injective sub-composability

OX(f)|D = OX(f) ◦ s
⊂ OD(f ◦ s)
= OD(f |D),

(C.19)

for all f ∈ RX .

Theorem C.20 (Super-restrictability is implied). O has order-con-
sistency and locality. =⇒ O has super-restrictability.

Proof. Let D ⊂ X, D = X \ D, and ĥ ∈ OD(f |D). Let f̂ ∈ RX be such
that

(
f̂ |D

)
= ĥ and

(
f̂ |D

)
= 0. Then

(
f̂ |D

)
∈ OD(f |D), and by order-

consistency,
(
f̂ |D

)
∈ OD

(
f |D

)
. By locality, f̂ ∈ OX(f).

Theorem C.21 (Scalar homogeneity is implied). OX has order-con-
sistency, transitivity, and scale-invariance. =⇒ OX has scalar homogene-
ity.

Proof. OX has orderness by [Orderness is implied] (C.10).
⊂

Let f̂ ∈ OX(f), and α ∈ R>0. By order-consistency, scale-invariance, orderness,
and scale-invariance again,

αf̂ ∈ OX

(
αf̂
)

= OX

(
f̂
)

⊂ OX(f)
= OX(αf).

(C.22)

Therefore αf̂ ∈ OX(αf).
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⊃

Let f̂ ∈ OX(αf). By scale-invariance, f̂ ∈ OX(f). By orderness, OX

(
f̂
)
⊂

OX(f). By scale-invariance, OX

(
(1/α)f̂

)
⊂ OX(f). By orderness, (1/α)f̂ ∈

OX(f). Therefore f̂ ∈ αOX(f), and so OX has scalar homogeneity.

Theorem C.23 (Super-homogeneity is implied). OX has order-con-
sistency, locality, transitivity, one-separation, scale-invariance, sub-homo-
geneity in N, sub-homogeneity in 1/N>0, and sub-composability.
=⇒ OX has super-homogeneity.

Proof. OX has sub-restrictability by [Sub-restrictability is implied] (C.18),
sub-homogeneity by [Sub-homogeneity is implied] (C.4), and zero-triviality
by [Zero-triviality is implied] (C.11). Let ĥ ∈ OX(fg), G = ←−g

(
R>0), and

G = X \G. Let f̂ ∈ RX be such that
(
f̂ |G

)
=
(
ĥ|G

)
/(g|G) and

(
f̂ |G

)
= 0.

By sub-restrictability, and sub-homogeneity,(
f̂ |G

)
∈ OX(fg)|G

g|G

⊂ OG(fg|G)
g|G

⊂ OG(f |G).

(C.24)

By order-consistency,
(
f̂ |G

)
∈ OG

(
f |G

)
. By locality, f̂ ∈ OX(f). It holds that(

ĥ|G
)
∈ OX(fg)|G. By sub-restrictability,

(
ĥ|G

)
∈ OG(0). By zero-triviality,(

ĥ|G
)

= 0. Therefore f̂g = ĥ.

Theorem C.25 (Sub-multiplicativity is implied). OX has order-con-
sistency, transitivity, scale-invariance, sub-homogeneity in N, and sub-
homogeneity in 1/N>0. =⇒ OX has sub-multiplicativity.

Proof. OX has orderness by [Orderness is implied] (C.10), and sub-homogeneity
by [Sub-homogeneity is implied] (C.4). Let f, g ∈ RX , and f̂ ∈ OX(f). By
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sub-homogeneity,
f̂g ∈ OX(f)g
⊂ OX(fg).

(C.26)

By orderness,
OX

(
f̂g
)
⊂ OX(fg). (C.27)

By sub-homogeneity,
f̂ OX(g) ⊂ OX

(
f̂g
)

⊂ OX(fg).
(C.28)

Therefore OX(f) ·OX(g) ⊂ OX(fg).

Theorem C.29 (Super-multiplicativity is implied). O has order-
consistency, transitivity, one-separation, scale-invariance, sub-homogeneity
in N, sub-homogeneity in 1/N>0, locality, and sub-composability. =⇒ O
has super-multiplicativity.

Proof. OX has sub-restrictability by [Sub-restrictability is implied] (C.18),
sub-homogeneity by [Sub-homogeneity is implied] (C.4), and zero-triviality
by [Zero-triviality is implied] (C.11). Let f, g ∈ RX , and ĥ ∈ OX(fg). Let

G =←−g
(
R>0), and G = X \G. Let f̂ ∈ RX be such that

(
f̂ |G

)
=
(
ĥ|G
)

(g|G) and(
f̂ |G

)
= 0. It holds that

(
ĥ|G

)
∈ OX(fg)|G. By sub-restrictability,

(
ĥ|G

)
∈

OG(fg|G). Similarly,
(
ĥ|G

)
∈ OG

(
fg|G

)
= OG(0). By sub-homogeneity(

f̂ |G
)
∈ OG(fg|G)

g|G

⊂ OG

(
fg|G
g|G

)
= OG(f |G).

(C.30)

By order-consistency,
(
f̂ |G

)
∈ OG

(
f |G

)
. By locality, f̂ ∈ OX(f). By order-

consistency, g ∈ OX(g). By definition,
(
f̂ |G

)
(g|G) =

(
ĥ|G

)
. By zero-triviality,(

ĥ|G
)

= 0, and so
(
ĥ|G

)
=
(
f̂ |G

)(
g|G
)
. Therefore ĥ = f̂g; O has super-

multiplicativity.
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Theorem C.31 (Locality is implied). OX has order-consistency, tran-
sitivity, one-separation, scale-invariance, sub-homogeneity in N, sub-homo-
geneity in 1/N>0, and sub-composability. =⇒ OX has locality.

Proof.
Implied properties

OX has zero-triviality by [Zero-triviality is implied] (C.11), and sub-multi-
plicativity by [Sub-multiplicativity is implied] (C.25).
Reduction from a finite cover to partition

Let f, g ∈ RX . We can refine a finite cover C ⊂ P(X) of X to a finite
partition {A1, . . . , Am} ⊂ P(X) of X. In the definition of locality, we assume
that

(f |D) ∈ OD(g|D), (C.32)

for all D ∈ C. By injective sub-composability,

(f |Ai) ∈ OAi(g|Ai), (C.33)

for all i ∈ [1,m]N. Therefore, we may assume the finite cover of X to be a finite
partition of X.
Notation

Let {A1, . . . , Am} ⊂ P(X) be a finite partition of X. Suppose that

(f |Ai) ∈ OAi(g|Ai), (C.34)

for all i ∈ [1,m]N. Let

I =
{
i ∈ [1,m]N :

−→
f (Ai) ∩ R>0 6= ∅

}
. (C.35)

Let i ∈ I. Let pi ∈ X be such that pi ∈ Ai, and

f(pi) > 0, (C.36)

Let ci, di ∈ R≥0 be such that

ci = f(pi)
di = g(pi).

(C.37)
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Let si : X → X be such that

si(x) =
{
x, x ∈ Ai,
pi, otherwise.

(C.38)

Positivity

By injective sub-composability,

(f |{pi}) ∈ O{pi}(g|{pi}). (C.39)

By zero-triviality, and since ci > 0, it holds that di > 0.
Lift

By sub-composability,

(f |Ai) ◦ si ∈ OX((g|Ai) ◦ si). (C.40)

This is equivalent to

(f [Ai]X + ci[X \Ai]X) ∈ OX(g[Ai]X + di[X \Ai]X). (C.41)

By order-consistency, and scale-invariance,(
[Ai]X + 1

ci
[X \Ai]X

)
∈ OX

(
[Ai]X + 1

di
[X \Ai]X

)
. (C.42)

By sub-multiplicativity,

(f [Ai]X + [X \Ai]X) ∈ OX(g[Ai]X + [X \Ai]X). (C.43)

Sum by multiplying

We have that ∏
i∈I

(f [Ai]X + [X \Ai]X) =
∑
i∈I

f [Ai]X = f,∏
i∈I

(g[Ai]X + [X \Ai]X) =
∑
i∈I

g[Ai]X ≤ g.
(C.44)

By sub-multiplicativity,

f ∈ OX

(∑
i∈I

g[Ai]X

)
. (C.45)

113



Appendix C. Proofs of implied properties

By order-consistency, and transitivity,

f ∈ OX(g). (C.46)

Theorem C.47 (Additive consistency is implied). OX has order-
consistency, transitivity, locality, and injective sub-composability. =⇒ OX
has additive consistency.

Proof. OX has sub-restrictability by [Sub-restrictability is implied] (C.18). Let
f, u, v ∈ RX , and U := {x ∈ X : u(x) + v(x) > 0}.
⊂

Let f̂ , ĝ ∈ OX(f), and F :=
{
x ∈ X : ĝ(x) ≤ f̂(x)

}
. Let ĥ ∈ RX be such

that

ĥ(x) =
{
u(x)f̂(x)+v(x)̂g(x)

u(x)+v(x) , x ∈ U
0, x 6∈ U.

(C.48)

Then

ĥ(x) = u(x)f̂(x) + v(x)ĝ(x)
u(x) + v(x)

≤ u(x)f̂(x) + v(x)f̂(x)
u(x) + v(x)

= f̂(x),

(C.49)

for all x ∈ F ∩U . Also, ĥ(x) = 0 ≤ f̂(x), for all x ∈ F ∩U . By order-consistency,(
ĥ|F

)
∈ OF

(
f̂ |F

)
. By sub-restrictability and transitivity,

(
ĥ|F

)
∈ OF(f |F ).

Similarly,
(
ĥ|F

)
∈ OF

(
f |F

)
. By locality, ĥ ∈ OX(f). In addition, uf̂ + vĝ =

(u+ v)ĥ. Therefore uf̂ + vĝ ∈ (u+ v) OX(f).
⊃

Let f̂ ∈ OX(f). Then (u+ v)f̂ = uf̂ + vf̂ ∈ uOX(f) + vOX(f).
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Theorem C.50 (Maximum consistency is implied). OX has order-
consistency, transitivity, locality, and injective sub-composability. =⇒ OX
has maximum consistency.

Proof. OX has sub-restrictability by [Sub-restrictability is implied] (C.18).
⊂

Let f̂ , ĝ ∈ OX(f), and F :=
{
x ∈ X : ĝ(x) ≤ f̂(x)

}
. Let ĥ ∈ RX be such

that
ĥ := max(f̂ , ĝ). (C.51)

Then (
ĥ|F

)
=
(

max(f̂ , ĝ)|F
)

=
(
f̂ |F

)
.

(C.52)

By order-consistency,
(
ĥ|F

)
∈ OF

(
f̂ |F

)
. By sub-restrictability and transitiv-

ity,
(
ĥ|F

)
∈ OF(f |F ). Similarly,

(
ĥ|F

)
∈ OF

(
f |F

)
. By locality, ĥ ∈ OX(f).

In addition, max(f̂ , ĝ) = ĥ. Therefore max(f̂ , ĝ) ∈ OX(f).
⊃

Let f̂ ∈ OX(f). Then f̂ = max(f̂ , f̂) ∈ max(OX(f),OX(f)).

Theorem C.53 (Multiplicative consistency is implied). OX has or-
der-consistency, transitivity, locality, injective sub-composability. =⇒ OX
has multiplicative consistency.

Proof. OX has sub-restrictability by [Sub-restrictability is implied] (C.18). Let
f, u, v ∈ RX , and U := {x ∈ X : u(x) + v(x) > 0}.
⊂

Let f̂ , ĝ ∈ OX(f), and F :=
{
x ∈ X : ĝ(x) ≤ f̂(x)

}
. Let ĥ ∈ RX be such

that

ĥ(x) =


(
f̂(x)u(x)ĝ(x)v(x)

)1/(u(x)+v(x))
, x ∈ U

0, x 6∈ U.
(C.54)
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Then
ĥ(x) =

(
f̂(x)u(x)ĝ(x)v(x)

)1/(u(x)+v(x))

≤
(
f̂(x)u(x)f̂(x)v(x)

)1/(u(x)+v(x))

= f̂(x).

(C.55)

for all x ∈ F ∩U . Also, ĥ(x) = 0 ≤ f̂(x), for all x ∈ F ∩U . By order-consistency,(
ĥ|F

)
∈ OF

(
f̂ |F

)
. By sub-restrictability and transitivity,

(
ĥ|F

)
∈ OF(f |F ).

Similarly,
(
ĥ|F

)
∈ OF

(
f |F

)
. By locality, ĥ ∈ OX(f). In addition, f̂uĝv = ĥu+v

(we assume 00 = 1). Therefore f̂uĝv ∈ OX(f)u+v.
⊃

Let f̂ ∈ OX(f). Then f̂u+v = f̂uf̂v ∈ OX(f)u OX(f)v.

Theorem C.56 (Maximum rule is implied). OX has order-consistency,
transitivity, locality, and injective sub-composability. =⇒ OX has the
maximum rule.

Proof. OX has orderness by [Orderness is implied] (C.10), sub-restrictabil-
ity by [Sub-restrictability is implied] (C.18), and maximum consistency by
[Maximum consistency is implied] (C.50).
⊂

Let f, g ∈ RX . By order-consistency, f, g ∈ OX(max(f, g)). By orderness,
OX(f) ⊂ OX(max(f, g)) and OX(g) ⊂ OX(max(f, g)). By maximum consis-
tency,

max(OX(f),OX(g)) ⊂ max(OX(max(f, g)),OX(max(f, g)))
= OX(max(f, g)).

(C.57)

⊃

Let ĥ ∈ OX(max(f, g)), and F := {x ∈ X : g(x) ≤ f(x)}. Let f̂ ∈ RX be
such that

f̂ := ĥ[F ]X . (C.58)
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By order-consistency, f̂ ∈ OX

(
ĥ
)
. By transitivity, f̂ ∈ OX(max(f, g)). By sub-

restrictability (
f̂ |F

)
∈ OX(max(f, g))|F

⊂ OF(f |F ).
(C.59)

Also,
(
f̂ |F

)
= 0 ≤

(
f |F

)
. By order-consistency,

(
f̂ |F

)
∈ OX

(
f |F

)
. By

locality, f̂ ∈ OX(f). Similarly, let ĝ ∈ RX be such that ĝ := ĥ
[
F
]
X
. Then

ĝ ∈ OX(g). In addition, ĥ = max(f̂ , ĝ). Therefore ĥ ∈ max(OX(f),OX(g)).

Theorem C.60 (Summation rule is implied). OX has order-consis-
tency, transitivity, and scale-invariance =⇒ OX has the summation rule.

Proof. Let f, g ∈ RX .
⊂

It holds that
f + g ≤ 2 max(f, g). (C.61)

By order-consistency and transitivity, OX(f + g) ⊂ OX(2 max(f, g)). By scale-
invariance, OX(f + g) ⊂ OX(max(f, g)).
⊃

It holds that
max(f, g) ≤ f + g. (C.62)

By order-consistency and transitivity, OX(max(f, g)) ⊂ OX(f + g).

Theorem C.63 (Maximum-sum rule is implied). OX has order-con-
sistency, transitivity, and scale-invariance. =⇒ OX has the maximum-
sum rule.

Proof.
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⊂

Let f̂ ∈ OX(f) and ĝ ∈ OX(g). Let F =
{
x ∈ X : ĝ(x) ≤ f̂(x)

}
. Let u ∈ RX

be such that u := f̂ [F ]X . By order-consistency, u ∈ OX

(
f̂
)
. By transitivity,

u ∈ OX(f). Similarly, let v ∈ RX be such that v := ĝ
[
F
]
X
. Then v ∈ OX(g).

In addition, max(f̂ , ĝ) = u+ v. Therefore max(f̂ , ĝ) ∈ OX(f) + OX(g).
⊃

Let f, g ∈ RX , f̂ ∈ OX(f), and ĝ ∈ OX(g). Let

F =
{
x ∈ X : ĝ(x) ≤ f̂(x)

}
. (C.64)

Let u ∈ RX be such that u := (f̂ + ĝ)[F ]X . Then u ≤ (2f̂)[F ]X ≤ 2f̂ . By
order-consistency and transitivity, OX(u) ⊂ OX

(
2f̂
)
. By scale-invariance,

OX(u) ⊂ OX

(
f̂
)
. By order-consistency, u ∈ OX

(
f̂
)
. By transitivity u ∈

OX(f). Similarly, let v ∈ RX be such that

v := (f̂ + ĝ)
[
F
]
X
. (C.65)

Then v ∈ OX(g). In addition, max(u, v) = f̂ + ĝ. Therefore f̂ + ĝ ∈
max(OX(f),OX(g)).

Theorem C.66 (Additivity is implied). OX has order-consistency,
transitivity, locality, scale-invariance, and injective sub-composability. =⇒
OX has additivity.

Proof. Let f, g ∈ RX . OX has the summation rule by [Summation rule is
implied] (C.60). Therefore,

OX(f + g) = OX(max(f, g)). (C.67)

OX has the maximum rule by [Maximum rule is implied] (C.56). Therefore,

OX(max(f, g)) = max(OX(f),OX(g)). (C.68)

118



Appendix C. Proofs of implied properties

OX has the maximum-sum rule by [Maximum-sum rule is implied] (C.63).
Therefore,

max(OX(f),OX(g)) = OX(f) + OX(g). (C.69)

Therefore OX(f + g) = OX(f) + OX(g).

Theorem C.70 (Bounded translation-invariance is implied). OX
has order-consistency, transitivity, and scale-invariance =⇒ OX has
bounded translation-invariance.

Proof. Let α, β ∈ R>0, and f ∈ RX .
⊂

Since (f + β)/β ≥ 1,

(f + β) + α ≤ (f + β) + α((f + β)/β)
= (1 + α/β)(f + β).

(C.71)

By order-consistency and transitivity, OX(f + β + α) ⊂ OX((1 + α/β)(f + β)).
By scale-invariance OX(f + β + α) ⊂ OX(f + β)
⊃

By order-consistency and transitivity, OX(f + β) ⊂ OX(f + β + α).

Theorem C.72 (Extensibility is implied). OX has sub-composability
=⇒ OX has extensibility.

Proof. This follows from sub-composability by X = X∗, Y = X∗ × Y ∗, and
s = [X∗ × Y ∗].

Theorem C.73 (Subset-summability is implied). OX has primitive
properties. =⇒ OX has subset-summability.

Proof. This is proved in [Subset-sum is an O-mapping] (5.22).
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Theorem C.74 (Subset-summability implies sub-composability).
OX has order-consistency, transitivity and subset-summability. =⇒ OX
has sub-composability.

Proof. OX has reflexivity by [Reflexivity is implied] (C.7), and orderness by
[Orderness is implied] (C.10).

Let s : X → Y , and Sx = {(s(x), 0) : x ∈ X}. Let a : N→ R≥0 be such that
a(z) = 1. Then for f ∈ RY ,

OX

 ∑
(y,z)∈Sx

a(z)f(y)

 = OX(f ◦ s). (C.75)

Similarly, for f ∈ RY ,

OX

 ∑
(y,z)∈Sx

a(z)f(y)

 = OX
(
f ◦ s

)
. (C.76)

By subset-summability,

OX(f ◦ s) ⊂ OX
(
f ◦ s

)
. (C.77)

By orderness,
(f ◦ s) ∈ OX

(
f ◦ s

)
. (C.78)
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Proofs of local linear dominance
properties

In this section we prove some of the properties of a local linear dominance. We
shall apply the following simplification lemma without mentioning it, since it is
used in almost every proof.

Lemma D.1 (Simplification lemma for O). Let X ∈ U , I be a finite
set, Xi ⊂ X, fi ∈ RXi

, and f̂i ∈ OXi(fi), for all i ∈ I. Then there exists
c ∈ R>0 and A ∈ F(X), such that(

f̂i|(Xi ∩A)
)
≤ c(fi|(Xi ∩A)), (D.2)

for all i ∈ I.

Proof. Since f̂i ∈ OXi(fi), there exists ci ∈ R>0 and Bi ∈ F(Xi), such that(
f̂i|Bi

)
≤ ci(f |Bi), (D.3)

for all i ∈ I. By induced sub-structure, there exists Ai ∈ F(X) such that
Bi = Xi ∩ Ai, for all i ∈ I. Since F(X) is ⊂-directed, and I is finite, there
exists A ∈ F(X) such that A ⊂

⋂
i∈I Ai. Let c = max{ci : i ∈ I}. Since

(X ∩A) ⊂ (X ∩Ai), (
f̂i|(Xi ∩A)

)
≤ c(fi|(Xi ∩A)), (D.4)
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for all i ∈ I.

Note D.5 (Filter basis and simplification lemma). A filter basis
in X seems to be the minimal amount of structure needed to prove the
simplification lemma. Indeed, we first provided the abstraction of a filter
basis solely to prove this lemma in its most general form. It is only later
that we noticed that this structure also allows us to define limits. �

Theorem D.6 (Order-consistency for O). Let X ∈ U , and f, g ∈ RX .
Then

f ≤ g =⇒ OX(f) ⊂ OX(g). (D.7)

Proof. Let f̂ ∈ OX(f). Then there exists c ∈ R>0 and A ∈ F(X) such that(
f̂ |A

)
≤ c(f |A). (D.8)

Since f ≤ g, (
f̂ |A

)
≤ c(g|A). (D.9)

Therefore f̂ ∈ OX(g).

Theorem D.10 (Transitivity for O). Let X ∈ U , and f, g, h ∈ RX .
Then

(f ∈ OX(g) and g ∈ OX(h)) =⇒ f ∈ OX(h). (D.11)

Proof. Let f ∈ OX(g), and g ∈ OX(h). Then there exists c ∈ R>0 and
A ∈ F(X), such that

(f |A) ≤ c(g|A),
(g|A) ≤ c(h|A).

(D.12)

It follows that
(f |A) ≤ c(c(h|A))

= c2(h|A).
(D.13)

Therefore f ∈ OX(h).
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Theorem D.14 (Locality for O). Let X ∈ U , f, g ∈ RX , and C ⊂ P(X)
be a finite cover of X. Then

(∀D ∈ C : (f |D) ∈ OD(g|D)) =⇒ f ∈ OX(g). (D.15)

Proof. Assume (f |D) ∈ OD(g|D), for all D ∈ C. Then there exist c ∈ R>0 and
A ∈ F(X) such that

((f |D)|(D ∩A)) ≤ c((g|D)|(D ∩A))
⇐⇒ (f |(D ∩A)) ≤ c(g|(D ∩A)),

(D.16)

for all D ∈ C. Since C covers X,

(f |A) ≤ c(g|A). (D.17)

Therefore f ∈ OX(g).

Theorem D.18 (One-separation for O characterized).(
∀A ∈ F

(
N>0) : |A| 6∈ N

)
⇐⇒ n 6∈ ON>0(1). (D.19)

Proof.
=⇒

Suppose every set in F
(
N>0) is infinite. Then for all c ∈ R>0 and A ∈ F

(
N>0)

there exists n ∈ A such that n > c1. Therefore n 6∈ ON>0(1).
⇐=

Suppose some set A ∈ F
(
N>0) is finite. Let c = max(A ∪ {1}). Then

(n|A) ≤ c(1|A). Therefore n ∈ ON>0(1).

Theorem D.20 (Scale-invariance for O). Let X ∈ U , f ∈ RX , and
α ∈ R>0. Then OX(αf) = OX(f).

Proof.
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⊂

Assume f̂ ∈ OX(αf). Then there exists c ∈ R>0 and A ∈ F(X), such that(
f̂ |A

)
≤ c((αf)|A)

= (cα)(f |A).
(D.21)

Therefore f̂ ∈ OX(f).
⊃

Assume f̂ ∈ OX(f). Then there exists c ∈ R>0 and A ∈ F(X), such that(
f̂ |A

)
≤ c(f |A)

= (c/α)((αf)|A).
(D.22)

Therefore f̂ ∈ OX(αf).

Theorem D.23 (Sub-homogeneity for O). Let X ∈ U , and f, u ∈ RX .
Then

uOX(f) ⊂ OX(uf). (D.24)

Proof. Let f̂ ∈ OX(f). Then there exists c ∈ R>0 and A ∈ F(X), such that(
f̂ |A

)
≤ c(f |A). (D.25)

This implies (
uf̂ |A

)
≤ c(uf |A). (D.26)

Therefore uf̂ ∈ OX(uf).

Theorem D.27 (Super-homogeneity for O characterized). OX has
super-homogeneity. ⇐⇒ F(X) = {X}.

Proof.
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=⇒

Suppose F(X) 6= {X}. Then there exists exists A ∈ F(X) such that A 6= X.
Let A = X \A, and f ∈ RX be such that f = [A]X . Let g ∈ RX , and ĥ ∈ RX
be such that ĥ = fg[A]X +

[
A
]
X
. Then

(
ĥ|A

)
≤ (fg|A), and so ĥ ∈ OX(fg).

Let ĝ ∈ OX(g). Then 0 =
(
fĝ|A

)
6=
(
ĥ|A

)
= 1; OX does not have super-

homogeneity.
⇐=

Suppose F(X) = {X}. Let f, g ∈ RX , and ĥ ∈ OX(fg). Then there ex-
ists c ∈ R>0 such that

ĥ ≤ cfg. (D.28)

Let F =
←−
f
(
R>0), and F = X \ F . Let ĝ ∈ RX be such that (ĝ|F ) =(

ĥ|F
)
/(f |F ) and

(
ĝ|F
)

= 0. Then ĝ ≤ cg, and so ĝ ∈ OX(g). In addition,

ĥ = fĝ.

Theorem D.29 (Super-multiplicativity for O). Let X ∈ U , and f, g ∈
RX . Then

OX(f) OX(g) ⊃ OX(fg). (D.30)

Proof. Let ĥ ∈ OX(fg). Then there exists c ∈ R>0 and A ∈ F(X), such that(
ĥ|A

)
≤ c(fg|A). (D.31)

Let ĝ ∈ RX be such that

ĝ(x) =
{
g(x), x ∈ A,
1, x 6∈ A.

(D.32)

Then ĝ ∈ OX(g), since (ĝ|A) = (g|A). Let Ĝ = {x ∈ X : ĝ(x) > 0}, and let
f̂ ∈ RX be such that

f̂(x) =
{
ĥ(x)/ĝ(x), x ∈ Ĝ
0, x 6∈ Ĝ.

(D.33)
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If x ∈ Ĝ, then ĥ(x) = f̂(x)ĝ(x). If x 6∈ Ĝ, then x ∈ A, and g(x) = 0 = ĝ(x).
Since ĥ(x) ≤ cf(x)g(x), it follows that ĥ(x) = 0. Therefore ĥ(x) = f̂(x)ĝ(x),
and ĥ = f̂ ĝ. If x ∈ A \ Ĝ, then f̂(x) = 0, and f̂(x) ≤ cf(x). If x ∈ A ∩ Ĝ, then
g(x) = ĝ(x) > 0, and f̂(x) = ĥ(x)/g(x) ≤ cf(x). Therefore f̂ ∈ OX(f), and
ĥ ∈ OX(f) OX(g).

Note D.34 (Super-multiplicativity in another way?). In proving
super-multiplicativity, we cannot refer to [Super-multiplicativity is im-
plied] (C.29), since there are local linear dominances which do not satisfy
its assumptions. �

Theorem D.35 (Sub-composability for O for fixed s : Y → X). Let
X,Y ∈ U , and s : Y → X. Then

∀f ∈ RX : OX(f) ◦ s ⊂ OY(f ◦ s)
⇐⇒ ∀AX ∈ F(X),∃AY ∈ F(Y ) : −→s (AY ) ⊂ AX .

(D.36)

Proof. First notice that
−→s (AY ) ⊂ AX

⇐⇒ AY ⊂ ←−s (AX)
⇐⇒ [AY ]Y ≤ [←−s (AX)]Y
⇐⇒ [AY ]Y ≤ [AX ]X ◦ s,

(D.37)

for all AX ∈ F(X), AY ∈ F(Y ). We attempt to prove the statement in this
form.
=⇒

Let AX ∈ F(X), f = [AX ]X , and f̂ ∈ RX be such that f̂ = 1. Then(
f̂ |AX

)
≤ 1(f |AX), and so f̂ ∈ OX(f). By assumption, f̂ ◦ s = 1 ∈ OY(f ◦ s),

and so there exists d ∈ R>0 and AY ∈ F(Y ) such that

[AY ]Y ≤ [AY ]Y d(f ◦ s)
= [AY ]Y d([AX ]X ◦ s)
≤ d([AX ]X ◦ s).

(D.38)
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Since the functions are indicator functions, this is equivalent to

[AY ]Y ≤ [AX ]X ◦ s. (D.39)

⇐=

Let f ∈ RX and f̂ ∈ OX(f). Then there exists c ∈ R>0 and AX ∈ F(X)
such that [AX ]X f̂ ≤ [AX ]Xcf . By assumption, there exists AY ∈ F(Y ) such
that [AY ]Y ≤ [AX ]X ◦ s. Then

[AX ]X f̂ ≤ [AX ]Xcf

=⇒ ([AX ]X ◦ s)
(
f̂ ◦ s

)
≤ ([AX ]X ◦ s)c(f ◦ s)

=⇒ [AY ]Y
(
f̂ ◦ s

)
≤ [AY ]Y c(f ◦ s)

=⇒
(
f̂ ◦ s

)
∈ OY(f ◦ s).

(D.40)

Theorem D.41 (Characterization of sub-composability for O). O
has sub-composability if and only if

(∀X ∈ U : F(X) = {X}) or (∀X ∈ U : ∅ ∈ F(X)). (D.42)

Proof.
=⇒

Suppose there exists X ∈ U , such that ∅ 6∈ F(X) and F(X) 6= {X}. Let
A ∈ F(X), x∗ ∈ X \ A, and s : X → X be such that s(x) = x∗. Then
−→s (X) ∩ A = ∅, and O does not have sub-composability under s by [Sub-
composability for O for fixed s : Y → X] (D.35). This shows that either
F(X) = {X}, or ∅ ∈ F(X), for all X ∈ U .

Suppose there existsX,Y ∈ U , such that ∅ ∈ F(X), and F(Y ) = {Y }. Then
sub-composability does not hold for any s : Y → X, by [Sub-composability for
O for fixed s : Y → X] (D.35), because −→s (Y ) 6⊂ ∅.
⇐=

Let X,Y ∈ U , and s : Y → X. Either ∅ ∈ F(X) and ∅ ∈ F(Y ), or F(X) = {X}
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and F(Y ) = {Y }. In either case, sub-composability holds by [Sub-composabil-
ity for O for fixed s : Y → X] (D.35).

Theorem D.43 (Sub-composability for O for positive functions).
∀X ∈ U,∀A ∈ F(X) : |X \A| < ∞ =⇒ O has sub-composability for
positive functions .

Proof. Let f̂ ∈ OX(f), where f ∈ RX>0. Then there exists A ∈ F(X) and
c ∈ R>0, such that (

f̂ |A
)
≤ c(f |A)

⇐⇒

(
f̂ |A

)
(f |A) ≤ c.

(D.44)

Since |X \A| <∞, let

d = max
{
f̂ |(X \A)
f |(X \A)

}
∪ {c}. (D.45)

Then d ∈ R>0, and
f̂

f
≤ d

⇐⇒ f̂ ≤ df.
(D.46)

Let s : Y → X, where Y ∈ U . Then

(f̂ ◦ s) ≤ d(f ◦ s). (D.47)

Therefore
(
f̂ ◦ s

)
∈ OX(f ◦ s).

Theorem D.48 (Characterization of Extensibility for O). OX has
extensibility if and only if

∀A ∈ F(X) : ∃B ∈ F(X × Y ) :
−−−−−→
[X × Y ](B) ⊂ A. (D.49)

Proof. This follows directly from [Sub-composability for O for fixed s : Y →
X] (D.35).
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Theorem D.50 (Power-homogeneity for O). Let X ∈ U , f ∈ RX ,
and α ∈ R>0. Then

OX(f)α = OX(fα). (D.51)

Proof.
⊂

Let f̂ ∈ OX(f). Then there exists A ∈ F(X), and c ∈ R>0, such that(
f̂ |A

)
≤ c(f |A). (D.52)

Then (
f̂ |A

)α
≤ cα(f |A)α. (D.53)

Therefore f̂α ∈ OX(fα).
⊃

Let f̂ ∈ OX(fα). Then there exists A ∈ F(X), and c ∈ R>0, such that(
f̂ |A

)
≤ c(fα|A). (D.54)

Then (
f̂ |A

)1/α
≤ c(f |A). (D.55)

Let g ∈ RX be such that g = f̂1/α. Then g ∈ OX(f), and gα = f̂ .

Note D.56 (Power-homogeneity from primitive properties). We
would rather want to prove power-homogeneity from primitive properties,
as done for other non-primitive properties in Appendix C. However, we
were unable to come up with such a proof. �

Theorem D.57 (Zero-triviality for O characterized). OX has zero-
triviality if and only if F(X) = {X}.

Proof.
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=⇒

Suppose there exists A ∈ F(X) such that A 6= X. Then [X \A]X ∈ OX(0) and
zero-triviality does not hold.
⇐=

Suppose F(X) = {X}, and f ∈ OX(0). Then there exists c ∈ R>0, such
that

f ≤ c0. (D.58)

Therefore f = 0.

Theorem D.59 (O is almost equal to O for cofinite filter sets).
Suppose |X \A| <∞, for all A ∈ F(X). Then

OX(g) = OX(g), (D.60)

for all g ∈ RX>0.

Proof.
⊂

Suppose f ∈ OX(g). Then there exists A ∈ F(X) and c ∈ R>0, such that

(f |A) ≤ c(g|A)

⇐⇒ (f |A)
(g|A) ≤ c.

(D.61)

Since X \A is finite, let

d = max
(
f

g

)
(X \A) ∪ {c}. (D.62)

Then
f

g
≤ d

⇐⇒ f ≤ dg.
(D.63)

Therefore f ∈ OX(g).
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⊃

Suppose f ∈ OX(g). Then there exists c ∈ R>0, such that

f ≤ cg. (D.64)

Let A ∈ F(X). Then
(f |A) ≤ c(g|A). (D.65)

Therefore f ∈ OX(g).
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Proofs of limit theorems

In this section we prove the limit theorems for local linear dominance.

Theorem E.1 (Relation between ratio-limits).

lim sup
F(F )

(f |F )
(g|F ) = 1/ lim inf

F(F )

(g|F )
(f |F ) , (E.2)

for all f, g ∈ RX , where F =
←−
f
(
R>0).

Proof.
Notation

Let
c := lim sup

F(F )

(f |F )
(g|F ) , (E.3)

and
d := lim inf

F(F )

(g|F )
(f |F ) . (E.4)

c =∞ ⇐⇒ d = 0
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c =∞

⇐⇒ ∀A ∈ F(F ) : sup
−−−−−→(
f |A
g|A

)
(A) =∞

⇐⇒ ∀A ∈ F(F ) : ∃x ∈ A : g(x) = 0

⇐⇒ ∀A ∈ F(F ) : inf
−−−−−→(
g|A
f |A

)
(A) = 0

⇐⇒ d = 0.

(E.5)

Therefore, if c =∞, or d = 0, we have that

c = 1/d. (E.6)

c = 0 =⇒ d =∞

Suppose c = 0. For any ε ∈ R>0, there exists A ∈ F(F ), such that

sup
−−−−−→(
f |A
g|A

)
(A) ≤ ε

=⇒ (f |A)
(g|A) ≤ ε

=⇒ (g|A)
(f |A) ≥

1
ε

=⇒ inf
−−−−−→(
g|A
f |A

)
(A) ≥ 1

ε

(E.7)

Therefore,
d ≥ 1

ε
. (E.8)

Since this holds for all ε,
d =∞. (E.9)

Therefore, if c = 0, then d =∞, and

c = 1/d. (E.10)

c = 0 ⇐= d =∞
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Suppose d =∞. For ε ∈ R>0, there exists A ∈ F(F ), such that

inf
−−−−−→(
g|A
f |A

)
(A) ≥ ε

=⇒ (g|A)
(f |A) ≥ ε

=⇒ (f |A)
(g|A) ≤

1
ε

=⇒ sup
−−−−−→(
f |A
g|A

)
(A) ≤ 1

ε
.

(E.11)

Therefore
c ≤ 1

ε
. (E.12)

Since this holds for all ε,
c = 0. (E.13)

Therefore, if d =∞, then c = 0, and

c = 1/d. (E.14)

c ≥ 1/d

Suppose c, d ∈ R>0. By definition, for any ε ∈ R>0, there exists A ∈ F(F ),
such that

sup
−−−−−→(
f |A
g|A

)
(A)− c ≤ ε

=⇒ (f |A)
(g|A) − c ≤ ε

=⇒ (f |A)
(g|A) ≤ c+ ε

=⇒ (g|A)
(f |A) ≥

1
c+ ε

=⇒ inf
−−−−−→(
g|A
f |A

)
(A) ≥ 1

c+ ε
.

(E.15)

Therefore
d ≥ 1

c+ ε
. (E.16)
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Since this holds for all ε,
d ≥ 1

c
=⇒ c ≥ 1/d.

(E.17)

c ≤ 1/d

Suppose c, d ∈ R>0. By definition, for any ε ∈ R>0 such that ε < d, there exists
A ∈ F(F ), such that

d− inf
−−−−−→(
g|A
f |A

)
(A) ≤ ε

=⇒ d− (g|A)
(f |A) ≤ ε

=⇒ d− ε ≤ (g|A)
(f |A)

=⇒ 1
d− ε

≥ (f |A)
(g|A)

=⇒ 1
d− ε

≥ sup
−−−−−→(
f |A
g|A

)
(A).

(E.18)

Therefore
c ≤ 1

d− ε
. (E.19)

Since this holds for all ε,
c ≤ 1

d
. (E.20)

Theorem E.21 (O by a limit).

lim sup
F(F )

(f |F )
(g|F ) <∞ ⇐⇒ f ∈ OX(g), (E.22)

for all f, g ∈ RX , where F =
←−
f
(
R>0).

Proof.
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Notation

Let
d := lim sup

F(F )

(f |F )
(g|F ) . (E.23)

=⇒

Suppose d < ∞. By definition, for any ε ∈ R>0, there exists A ∈ F(F ),
such that (g|A) > 0, and

sup
−−−−−→(
f |A
g|A

)
(A)− d ≤ ε

=⇒ (f |A)
(g|A) − d ≤ ε

=⇒ (f |A) ≤ (d+ ε)(g|A).

(E.24)

Therefore (f |F ) ∈ OF(g|F ). By order-consistency,
(
f |F

)
∈ OF

(
g|F
)
, where

F = X \ F . By locality, f ∈ OX(g).
⇐=

Suppose f ∈ OX(g). By restrictability, (f |F ) ∈ OF(g|F ). Therefore, there
exists A ∈ F(F ) and c ∈ R>0, such that

(f |A) ≤ c(g|A) (E.25)

In particular, (g|A) > 0. Therefore

(f |A)
(g|A) ≤ c

=⇒ sup
−−−−−→(
f |A
g|A

)
(A) ≤ c.

(E.26)

Therefore
d ≤ c <∞. (E.27)
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Theorem E.28 (Ω by a limit).

lim inf
F(G)

(f |G)
(g|G) > 0 ⇐⇒ f ∈ ΩX(g), (E.29)

for all f, g ∈ RX , where G =←−g
(
R>0).

Proof. This follows from [O by a limit] (E.21) and [Relation between ratio-
limits] (E.1).

Theorem E.30 (o by a limit).(
lim sup
F(F )

(f |F )
(g|F ) <∞ and lim inf

F(G)

(f |G)
(g|G) = 0

)
⇐⇒ f ∈ oX(g), (E.31)

for all f, g ∈ RX , where F =
←−
f
(
R>0) and G =←−g

(
R>0).

Proof. By definition,

f ∈ oX(g)
⇐⇒ f ∈ OX(g) and ¬(g ∈ OX(f))
⇐⇒ f ∈ OX(g) and ¬(f ∈ ΩX(g)).

(E.32)

The first term is obtained by [O by a limit] (E.21), and the second term is
obtained by [Ω by a limit] (E.28).

Theorem E.33 (Traditional oX by a limit).

∀ε ∈ R>0 : ∃A ∈ F(X) : (f |A) ≤ ε(g|A)

⇐⇒ lim sup
F(F )

(f |F )
(g|F ) = 0,

(E.34)

for all f, g ∈ RX , where F =
←−
f
(
R>0).
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Proof. It holds that

∀ε ∈ R>0 : ∃A ∈ F(X) : (f |A) ≤ ε(g|A)
⇐⇒ ∀ε ∈ R>0 : ∃A ∈ F(F ) : (f |A) ≤ ε(g|A)

⇐⇒ ∀ε ∈ R>0 : ∃A ∈ F(F ) : (f |A)
(g|A) ≤ ε

⇐⇒ ∀ε ∈ R>0 : ∃A ∈ F(F ) : sup
−−−→
(f |A)
(g|A) (A) ≤ ε

⇐⇒ ∀ε ∈ R>0 : lim sup
F(F )

(f |F )
(g|F ) ≤ ε

⇐⇒ lim sup
F(F )

(f |F )
(g|F ) = 0.

(E.35)

Theorem E.36 (ω by a limit).(
lim sup
F(F )

(f |F )
(g|F ) =∞ and lim inf

F(G)

(f |G)
(g|G) > 0

)
⇐⇒ f ∈ ωX(g), (E.37)

for all f, g ∈ RX , where F =
←−
f
(
R>0) and G =←−g

(
R>0).

Proof. Similarly to [o by a limit] (E.30).
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Proofs of Master theorems

In this section we will show that various Master theorems hold for the O-notation
as defined by linear dominance. The theorems are simpler for linear dominance
than for asymptotic linear dominance; there are no “regularity” requirements
(see [2]).

F.1 Master theorem over powers

Definition F.1 (Master function over powers). Let a ∈ R≥1, b ∈ R>1,
d ∈ R>0, B =

{
bi : i ∈ N

}
, and F ∈ RB. A master function over powers

is a function T ∈ RB defined by the recurrence equation

T (n) =
{
aT (n/b) + F (n), n ≥ b,
d, n < b.

(F.2)

The set of such functions is denoted byMP (a, b, d, F ).

Theorem F.3 (Logarithm swap). Let x, y, b ∈ R>0 be such that b 6= 1.
Then

xlogb(y) = ylogb(x). (F.4)
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Proof.
xlogb(y) =

(
blogb(x)

)logb(y)

= blogb(x) logb(y)

=
(
blogb(y)

)logb(x)

= ylogb(x).

(F.5)

Theorem F.6 (Explicit form for a Master function over powers).
Let T ∈MP (a, b, d, F ) be a Master function over powers. Then

T (n) = nlogb(a)d+
logb(n)−1∑

i=0
aiF (n/bi). (F.7)

Proof.
Pattern

Expanding the recurrence, we find that

T (1) = d,

T (b) = ad+ F (b),
T (b2) = a(ad+ F (b)) + F (b2)

= a2d+ aF (b) + F (b2),
T (b3) = a(a2d+ aF (b) + F (b2)) + F (b3)

= a3d+ a2F (b) + aF (b2) + F (b3).

(F.8)

Induction

This suggests the pattern

T (bm) = amd+
m−1∑
i=0

aiF (bm−i), (F.9)
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where m ∈ N. We prove this by induction. For the base case, T (1) = T (b0) = d.
For the induction step, if m > 0, then

T (bm) = aT (bm−1) + F (bm)

= a

(
am−1d+

m−2∑
i=0

aiF (bm−1−i)
)

+ F (bm)

= amd+
m−2∑
i=0

ai+1F (bm−1−i) + F (bm)

= amd+
m−1∑
i=1

aiF (bm−i) + F (bm)

= amd+
m−1∑
i=0

aiF (bm−i).

(F.10)

If n = bm, then m = logb(n), and

T (n) = alogb(n)d+
logb(n)−1∑

i=0
aiF (n/bi)

= nlogb(a)d+
logb(n)−1∑

i=0
aiF (n/bi),

(F.11)

where the last step is by [Logarithm swap] (F.3).

Theorem F.12 (Difference of powers). Suppose α, β ∈ R≥0 are such
that α < β. Then

(nβ − nα) ∈ ΘB
(
nβ − 1

)
. (F.13)

Proof. Since α < β, we have that (1− bα−β) > 0. Then

(nβ − 1)(1− bα−β) ≤ (nβ − 1)(1− nα−β)
≤ nβ(1− nα−β)
= nβ − nα

≤ nβ − 1.

(F.14)
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Lemma F.15 (Master summation lemma). Let a ∈ R≥1, b ∈ R>1,
c ∈ R≥0, and B =

{
bi : i ∈ N

}
. Let S ∈ RB be such that

S(n) = nc
logb(n)−1∑

i=0
(a/bc)i. (F.16)

Then
logb(a) < c =⇒ S ∈ ΘB(nc − 1),
logb(a) = c =⇒ S ∈ ΘB(nc logb(n)),

logb(a) > c =⇒ S ∈ ΘB

(
nlogb(a) − 1

)
.

(F.17)

Proof.
logb(a) = c

This implies a/bc = 1. Then

nc
logb(n)−1∑

i=0
(a/bc)i = nc logb(n). (F.18)

Therefore S ∈ ΘB(nc logb(n)).
logb(a) 6= c

Suppose logb(a) 6= c, and let γ = 1
(a/bc)−1 . Then

nc
logb(n)−1∑

i=0
(a/bc)i = nc

(a/bc)logb(n) − 1
(a/bc)− 1

= γnc
(
alogb(n)/nc − 1

)
= γ

(
alogb(n) − nc

)
= γ

(
nlogb(a) − nc

)
.

(F.19)

Therefore
S(n) = γ

(
nlogb(a) − nc

)
. (F.20)

logb(a) > c
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This implies γ > 0. Then S ∈ ΘB
(
nlogb(a) − 1

)
by [Difference of powers]

(F.12) and scale-invariance.
logb(a) < c

This implies γ < 0. Then S ∈ ΘB(nc − 1) by [Difference of powers] (F.12) and
scale-invariance.

Theorem F.21 (Master theorem over powers). Let T ∈MP (a, b, d, F )
be a Master function over powers, and F ∈ OB(nc), where c ∈ R≥0. Then

logb(a) < c =⇒ T ∈ OB(nc),
logb(a) = c =⇒ T ∈ OB(nc logb(bn)),

logb(a) > c =⇒ T ∈ ΘB

(
nlogb(a)

)
.

(F.22)

If F ∈ ΘB(nc), then each OB can be replaced with ΘB.
Proof.
Explicit forms

By [Explicit form for a Master function over powers] (F.6),

T (n) = nlogb(a)d+
logb(n)−1∑

i=0
aiF (n/bi), (F.23)

Let S ∈ RB be such that

S(n) = nc
logb(n)−1∑

i=0
(a/bc)i. (F.24)

Since F ∈ OB(nc), by subset-summability

OB

logb(n)−1∑
i=0

aiF (n/bi)

 ⊂ OB

logb(n)−1∑
i=0

ai(n/bi)c


= OB

nc logb(n)−1∑
i=0

(a/bc)i


= OB(S).

(F.25)
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logb(a) < c

By [Master summation lemma] (F.15),

OB(S) = OB(nc − 1). (F.26)

By additivity, scale-invariance, and since logb(a) < c,

OB(T ) = OB

(
nlogb(a)

)
+ OB

logb(n)−1∑
i=0

aiF (n/bi)


⊂ OB

(
nlogb(a)

)
+ OB(nc − 1)

= OB

(
nlogb(a) + nc − 1

)
= OB(nc).

(F.27)

logb(a) = c

By [Master summation lemma] (F.15),

OB(S) = OB(nc logb(n)). (F.28)

By additivity and scale-invariance,

OB(T ) = OB(nc) + OB

logb(n)−1∑
i=0

aiF (n/bi)


⊂ OB(nc) + OB(nc logb(n))
= OB(nc + nc logb(n))
= OB(nc logb(bn)).

(F.29)

logb(a) > c

By [Master summation lemma] (F.15),

OB(S) = OB

(
nlogb(a) − 1

)
. (F.30)
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By additivity and scale-invariance,

OB(T ) = OB

(
nlogb(a)

)
+ OB

logb(n)−1∑
i=0

aiF (n/bi)


⊂ OB

(
nlogb(a)

)
+ OB

(
nlogb(a) − 1

)
= OB

(
2nlogb(a) − 1

)
= OB

(
nlogb(a)

)
.

(F.31)

By order-consistency, OB
(
nlogb(a)) ⊂ OB(T ). Therefore OB(T ) = OB

(
nlogb(a)).

F ∈ ΘB(nc)

Suppose we know that F ∈ ΘB(nc). Then by subset-summability

OB

logb(n)−1∑
i=0

aiF (n/bi)

 = OB(S), (F.32)

and we get rid of subsets in the above proofs.

F.2 Master theorem over reals

Definition F.33 (Master function over reals). Let a ∈ R≥1, b ∈ R>1,
d ∈ R>0, and f ∈ RR≥1 . A master function over reals is a function t ∈ RR≥1

defined by the recurrence equation

t(x) =
{
at(x/b) + f(x), x ≥ b,
d, x < b.

(F.34)

The set of such functions is denoted byMR(a, b, d, f).

Theorem F.35 (Explicit form for a Master function over reals).
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Let t ∈MR(a, b, d, f) be a Master function over reals. Then

t(x) = ablogb(x)cd+
blogb(x)c−1∑

i=0
aif(x/bi). (F.36)

Proof.
Pattern

Suppose b0 ≤ x < b1. Then
t(x) = d. (F.37)

Suppose b1 ≤ x < b2. Then

t(x) = ad+ f(x). (F.38)

Suppose b2 ≤ x < b3. Then

t(x) = a(ad+ f(x/b)) + f(x)
= a2d+ af(x/b) + f(x).

(F.39)

Suppose b3 ≤ x < b4. Then

t(x) = a
(
a2d+ af(x/b2) + f(x/b)

)
+ f(x)

= a3d+ a2f(x/b2) + af(x/b) + f(x).
(F.40)

Induction

This suggests the pattern

t(x) = amd+
m−1∑
i=0

aif(x/bi), (F.41)

where m ∈ N is such that bm ≤ x < bm+1, which is equivalent to m = blogb(x)c.
That is,

t(x) = ablogb(x)cd+
blogb(x)c−1∑

i=0
aif(x/bi). (F.42)

This can be proved by induction, as with the analogous theorem for powers.
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Theorem F.43 (Master reduction from reals to powers). Suppose
T ∈MP (a, b, d, F ) is a Master function over powers, and t ∈MR(a, b, d, f)
is a Master function over reals. Then

f ∈ OR≥1

(
F (bblogb(x)c)

)
=⇒ t ∈ OR≥1

(
T (bblogb(x)c)

)
,

f ∈ ΩR≥1

(
F (bblogb(x)c)

)
=⇒ t ∈ ΩR≥1

(
T (bblogb(x)c)

)
.

(F.44)

Proof.
Explicit forms

We have that

T (bblogb(x)c) = ablogb(x)cd+
blogb(x)c−1∑

i=0
aiF (bblogb(x)c/bi),

t(x) = ablogb(x)cd+
blogb(x)c−1∑

i=0
aif(x/bi),

(F.45)

by [Explicit form for a Master function over powers] (F.6) and [Explicit form
for a Master function over reals] (F.35).
O-sets

Note that
bblogb(x)c/bi = bblogb(x/bi)c. (F.46)

By additivity and subset-summability,

OR≥1(t) = OR≥1

(
ablogb(x)cd

)
+ OR≥1

blogb(x)c−1∑
i=0

aif(x/bi)


⊂ OR≥1

(
ablogb(x)cd

)
+ OR≥1

blogb(x)c−1∑
i=0

aiF (bblogb(x/bi)c)


= OR≥1

(
T (bblogb(x)c)

)
.

(F.47)

The proof for Ω-sets is similar.
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Lemma F.48 (Identity equivalent).

x ∈ ΘR≥1

(
bblogb(x)c

)
. (F.49)

Proof.
bblogb(x)c ≤ blogb(x)

= x

≤ bblogb(x)cb,

(F.50)

for all x ∈ R≥1.

Theorem F.51 (Master theorem over reals). Let t ∈ MR(a, b, d, f)
be a Master function over reals, and f ∈ OR≥1(xc), where c ∈ R≥0. Then

logb(a) < c =⇒ t ∈ OR≥1(xc),
logb(a) = c =⇒ t ∈ OR≥1(xc logb(bx)),

logb(a) > c =⇒ t ∈ ΘR≥1

(
xlogb(a)

)
.

(F.52)

If f ∈ ΘR≥1(nc), then each OR≥1 can be replaced with ΘR≥1 .
Proof.
Reduction to powers

Let T ∈ MP (a, b, d, F ) be a Master function over powers, where F (n) = nc.
By [Identity equivalent] (F.48),

OR≥1(x) = OR≥1

(
bblogb(x)c

)
. (F.53)

By power-homogeneity,

OR≥1(xc) = OR≥1

(
bblogb(x)cc

)
= OR≥1

(
F (bblogb(x)c)

)
.

(F.54)

Since f ∈ OR≥1(xc) by assumption,

f ∈ OR≥1

(
F (bblogb(x)c)

)
. (F.55)

148



Appendix F. Proofs of Master theorems

By [Master reduction from reals to powers] (F.43),

OR≥1(t) ⊂ OR≥1

(
T (bblogb(x)c)

)
. (F.56)

logb(a) < c

By [Master theorem over powers] (F.21),

OB(T ) ⊂ OB(nc). (F.57)

By subset-summability,

OR≥1

(
T (bblogb(x)c)

)
⊂ OR≥1

((
bblogb(x)c

)c)
= OR≥1(xc).

(F.58)

logb(a) = c

By [Master theorem over powers] (F.21),

OB(T ) ⊂ OB(nc logb(bn)). (F.59)

By subset-summability,

OR≥1

(
T (bblogb(x)c)

)
⊂ OR≥1

((
bblogb(x)c

)c
logb

(
bbblogb(x)c

))
= OR≥1(xc logb(bx)).

(F.60)

logb(a) > c

By [Master theorem over powers] (F.21),

OB(T ) = OB

(
nlogb(a)

)
. (F.61)

By subset-summability,

OR≥1(t) = OR≥1

((
bblogb(x)c

)logb(a)
)

= OR≥1

(
xlogb(a)

)
.

(F.62)

f ∈ ΘR≥1(nc)

If f ∈ ΘR≥1(nc), then the subsets in the above proofs can be replaced with
equalities by [Master theorem over powers] (F.21).
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F.3 Master theorem over integers

Definition F.63 (Master function over integers). Let a ∈ R≥1, b ∈
R≥2, d ∈ R>0, and F ∈ RN≥1 . A master function over integers is a function
T ∈ RN≥1 defined by the recurrence equation

T (n) =
{
aT (dn/be) + F (n), n ≥ b,
d, n < b.

(F.64)

The set of such functions is denoted byMI(a, b, d, F ).

Note F.65 (Stricter requirement). The requirement b ≥ 2 is stricter
than the requirement b > 1 for the other Master theorems; this is needed
to avoid the recursion getting stuck to a fixed-point ≥ b. �

Definition F.66 (Ceiling division). The ceiling division is a function
N : N≥1 → N≥1 such that N(n) = dn/be.

Definition F.67 (Ceiling division number). The ceiling division num-
ber is a functionM : N≥1 → N such thatM(n) = min

{
i ∈ N : N (i)(n) < b

}
.

Theorem F.68 (Fixed points of the ceiling division). Let b ∈ R>1

and
F =

{
n ∈ N≥1 : dn/be = n

}
. (F.69)

Then
F =

{
n ∈ N≥1 : 1 ≤ n < b/(b− 1)

}
. (F.70)

In addition, F = {1} ⇐⇒ b ≥ 2.
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Proof. To characterize the fixed points,

n ∈ F
⇐⇒ dn/be = n

⇐⇒ ∃v ∈ R : −b < v ≤ 0 and nb+ v = n

⇐⇒ ∃v ∈ R : −b < v ≤ 0 and v = n(1− b)
⇐⇒ − b < n(1− b) ≤ 0
⇐⇒ b/(b− 1) > n ≥ 0
⇐⇒ 0 ≤ n < b/(b− 1)
⇐⇒ 1 ≤ n < b/(b− 1),

(F.71)

where we use a version of Euclidean division and the last step follows because
n ∈ N≥1. Based on this characterization,

F = {1}
⇐⇒ b/(b− 1) ≤ 2
⇐⇒ b ≤ 2(b− 1)
⇐⇒ 0 ≤ b− 2
⇐⇒ b ≥ 2.

(F.72)

Let us also note that
b/(b− 1) ≤ b

⇐⇒ b ≤ b(b− 1)
⇐⇒ 1 ≤ b− 1
⇐⇒ b ≥ 2.

(F.73)

Theorem F.74 (Explicit form for a Master function over integers).
Let T ∈MI(a, b, d, F ) be a Master function over integers. Then

T (n) = aM(n)d+
M(n)−1∑
i=0

aiF (N (i)(n)), (F.75)

Proof. The function M is well-defined by [Fixed points of the ceiling division]
(F.68), since b ≥ 2. Let n ∈ N≥1.
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Pattern

Suppose M(n) = 0. Then
T (n) = d. (F.76)

Suppose M(n) = 1. Then

T (n) = aT (dn/be) + F (n)
= aT (N (1)(n)) + F (n)
= ad+ F (n).

(F.77)

Suppose M(n) = 2. Then

T (n) = aT (N (1)(n)) + F (n)

= a
(
aT (

⌈
N (1)(n)/b

⌉
) + F (N (1)(n))

)
+ F (n)

= a2T (N (2)(n)) + aF (N (1)(n)) + F (n)
= a2d+ aF (N (1)(n)) + F (n).

(F.78)

Suppose M(n) = 3. Then

T (n) = a2T (N (2)(n)) + aF (N (1)(n)) + F (n)

= a2
(
aT (

⌈
N (2)(n)/b

⌉
) + F (N (2)(n))

)
+ aF (N (1)(n)) + F (n)

= a3T (N (3)(n)) + a2F (N (2)(n)) + aF (N (1)(n)) + F (n)
= a3d+ a2F (N (2)(n)) + aF (N (1)(n)) + F (n).

(F.79)

Induction

This suggests the pattern

T (n) = aM(n)d+
M(n)−1∑
i=0

aiF (N (i)(n)). (F.80)

This can be proved by induction, as in the explicit form for powers.
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Theorem F.81 (Bounds for N). Let n ∈ N≥1, and b ∈ R≥2. Then

n/bi ≤ N (i)(n) < n/bi + 2. (F.82)

Proof.
Pattern

It holds that dxe < x+ 1 for all x ∈ R. Therefore,

N (1)(n) = dn/be
< (n/b) + 1

N (2)(n) =
⌈
N (1)(n)/b

⌉
≤ d((n/b) + 1)/be
=
⌈
n/b2 + 1/b

⌉
< n/b2 + 1/b+ 1

N (3)(n) =
⌈
N (2)(n)/b

⌉
≤
⌈
n/b3 + 1/b2 + 1/b

⌉
< n/b3 + 1/b2 + 1/b+ 1.

(F.83)

Induction

This suggests the pattern

N (i)(n) < n/bi +
i−1∑
j=0

(1/b)j . (F.84)

This can be proved by induction. Since b > 1,

N (i)(n) < n/bi + 1− (1/b)i

1− (1/b)

< n/bi + 1
1− (1/b) .

(F.85)

Since b ≥ 2,
N (i)(n) < n/bi + 2. (F.86)

Similarly, since x ≤ dxe, for all x ∈ R, it can be proved that n/bi ≤ N (i)(n).
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Note F.87 (Ceiling division pitfall). It holds that ddn/ae/be = dn/(ab)e,
for all a, b ∈ N>0 and n ∈ N. A potential pitfall in the proof of [Bounds
for N ] (F.81) is to assume that this also holds when a, b ∈ R>0. A coun-
terexample is given by n = 6 and a = b = 5/2. �

Theorem F.88 (Bounds for M). Let n ∈ N≥1, and b ∈ R≥2. Then

blogb(n)c ≤M(n) ≤ blogb(n)c+ 2. (F.89)

Proof. By [Bounds for N ] (F.81),

N (blogb(n)c+1)(n) < n

bblogb(n)c+1 + 2

<
n

blogb(n) + 2

= n

n
+ 2

= 3.

(F.90)

This is equivalent to N (blogb(n)c+1)(n) ∈ {1, 2}. Since N (1)(2) = d2/be = 1,
it follows that M(n) ≤ blogb(n)c + 2. Similarly, it follows that blogb(n)c ≤
M(n).

Theorem F.91 (Multiplicative bounds for N (i)(n)). Let n ∈ N≥1,
b ∈ R≥2, and i ∈ [0, blogb(n)c+ 1]. Then

n/bi ≤ N (i)(n) < 3b(n/bi). (F.92)

Proof. We would like to find β ∈ R>0 such that

n/bi + 2 ≤ β(n/bi)
⇐⇒ β ≥ 1 + 2bi/n,

(F.93)

154



Appendix F. Proofs of Master theorems

For the given argument-sets,

1 + 2bi/n ≤ 1 + 2bblogb(n)c+1/n

≤ 1 + 2blogb(n)+1/n

= 1 + 2b
≤ b+ 2b
= 3b.

(F.94)

Therefore β = 3b suffices. Then

n/bi ≤ N (i)(n)
< n/bi + 2
≤ 3b(n/bi),

(F.95)

by [Bounds for N ] (F.81).

Theorem F.96 (Master theorem over integers). Let T ∈MI(a, b, d, F )
be a Master function over integers, and F ∈ ON≥1(nc), where c ∈ R≥0.
Then

logb(a) < c =⇒ T ∈ ON≥1(nc),
logb(a) = c =⇒ T ∈ ON≥1(nc logb(bn)),

logb(a) > c =⇒ T ∈ ΘN≥1

(
nlogb(a)

)
.

(F.97)

If F ∈ ΘN≥1(nc), then each ON≥1 can be replaced with ΘN≥1 .
Proof.
Explicit form

By [Explicit form for a Master function over integers] (F.74),

T (n) = aM(n)d+
M(n)−1∑
i=0

aiF (N (i)(n)), (F.98)

First term
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By [Bounds for M ] (F.88),

blogb(n)c ≤M(n) ≤ blogb(n)c+ 2
=⇒ ablogb(n)cd ≤ aM(n)d ≤ ablogb(n)c+2d

=⇒ ablogb(n)cd ≤ aM(n)d ≤ ablogb(n)ca2d

(F.99)

By order-consistency and scale-invariance,

ON≥1

(
aM(n)d

)
= ON≥1

(
ablogb(n)c

)
. (F.100)

Sum term

Since F ∈ ON≥1(nc), by subset-summability

ON≥1

M(n)−1∑
i=0

aiF (N (i)(n))


⊂ ON≥1

M(n)−1∑
i=0

ai(N (i)(n))c
.

(F.101)

By [Multiplicative bounds for N (i)(n)] (F.91),

(n/bi) ≤ N (i)(n) < 3b(n/bi), (F.102)

for all i ∈ [0, blogb(n)c+ 1]. By order-consistency and scale-invariance,

ON≥1

M(n)−1∑
i=0

ai(N (i)(n))c


= ON≥1

M(n)−1∑
i=0

ai(n/bi)c
.

(F.103)

Combined terms

We combine the first term and the sum term by additivity:

ON≥1(T ) ⊂ ON≥1

ablogb(n)c +
M(n)−1∑
i=0

ai(n/bi)c
. (F.104)
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By [Bounds for M ] (F.88),

blogb(n)c ≤M(n) ≤ blogb(n)c+ 2. (F.105)

Therefore, by order-consistency,

ON≥1

ablogb(n)c +
blogb(n)c−1∑

i=0
ai(n/bi)c


⊂ ON≥1

ablogb(n)c +
M(n)−1∑
i=0

ai(n/bi)c


⊂ ON≥1

ablogb(n)c +
blogb(n)c+1∑

i=0
ai(n/bi)c

.
(F.106)

The last two terms in the sum are given by

ablogb(n)c(n/bblogb(n)c)c + ablogb(n)c+1(n/bblogb(n)c+1)c

= ablogb(n)c(n/bblogb(n)c)c(1 + a/bc)

∈ ΘN≥1

(
ablogb(n)c

)
.

(F.107)

Therefore,

ON≥1

ablogb(n)c +
M(n)−1∑
i=0

ai(n/bi)c


= ON≥1

ablogb(n)c +
blogb(n)c−1∑

i=0
ai(n/bi)c

.
(F.108)

Reduction to reals

Let t ∈ MR(a, b, d, f) be a Master function over reals, where f ∈ RR>1 is
such that f(x) = xc. By [Explicit form for a Master function over reals]
(F.35),

t(x) = ablogb(x)c +
blogb(x)c−1∑

i=0
ai(x/bi)c. (F.109)
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Therefore,
ON≥1(T ) ⊂ ON≥1

(
t|N≥1). (F.110)

The results follow from [Master theorem over reals] (F.51).
Θ-sets

If F ∈ ΘN≥1(nc), then we can get rid of the subsets in the above proof.
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Comparison of definitions

In this section we will study various candidate definitions for the O-notation.
This highlights the ways in which some familiar candidate definitions fail the
primitive properties. The properties of the candidate definitions, proved in this
section, are summarized upfront in Table G.1.

G.1 Trivial linear dominance

Definition G.1 (Trivial linear dominance). Trivial linear dominance
O is defined by

OX(f) = RX , (G.2)

for all f ∈ RX , and all X ∈ U , where U is the class of all sets.

Theorem G.3 (Trivial linear dominance is local linear dominance).
The family F = {∅ : X ∈ U} is a family of filter bases with induced sub-
structure.

Proof.
Directedness

Let A,B ∈ F(X), where X ∈ U . Then A = ∅ = B, and we may choose
C := ∅ ∈ F(X), so that C ⊂ A ∩B.
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Property O O O O O
Order-consistency XD.6 XG.61
Reflexivity XC.7
Transitivity XD.10 XG.63
Orderness XC.10
Zero-separation XC.8 7 G.68
Zero-triviality XD.57 7 D.57 7 D.57 7 D.57 7 G.113
One-separation X4.10 XG.38 XG.26 XG.14 XG.70
Scale-invariance XD.20 XG.72
Scalar homogeneity XC.21
Sub-homogeneity in N XD.23 7 G.82
Sub-hom. in 1/N>0 XD.23 XG.85
Sub-homogeneity in Q≥0 XC.2 7 G.82
Sub-homogeneity XC.4 7 G.82
Super-homogeneity XD.27 7 D.27 7 D.27 7 D.27 7 G.92
Power-homogeneity XD.50 XG.98
Additive consistency XC.47
Multiplicative cons. XC.53
Maximum consistency XC.50
Locality XD.14 XG.66
Sub-multiplicativity XC.25 7 G.82
Super-multiplicativity XD.29 XG.94
Sub-restrictability XC.18
Super-restrictability XC.20
Maximum rule XC.56
Summation rule XC.60
Maximum-sum rule XC.63
Additivity XC.66
Bounded translation-inv. XC.70
Sub-composability X4.16 7 G.46 7 G.29 7 G.18 XG.76
Injective sub-comp. X4.16 XG.49 7 G.29 7 G.18 XG.76
Injective super-comp. XC.13 XC.13 ? ? XC.13
Extensibility XG.55 7 G.50 7 G.30 XG.20 XG.89
Subset-summability X5.22 7 C.74 7 C.74 7 C.74 ?
Universe sets sets U U sets

Table G.1: Comparison of O-notations. The Xand 7 mean that we have proved
and disproved, respectively, the property. The following number refers to the
corresponding theorem. Primitive properties are marked with a bold face, and
U =

⋃
d∈N P

(
Rd
)
.
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Induced sub-structure

Let D ⊂ X, where X ∈ U . Then F(D) = {∅} = {A ∩D : A ∈ F(X)}.

Theorem G.4 (One-separation fails for O). O does not have one-
separation.

Proof. It holds that n ∈ RN>0 = ON>0(1).

Theorem G.5 (Sub-composability for O). O has sub-composability.

Proof. The right side of the implication

(f ◦ s) ∈ OY(g ◦ s) (G.6)

holds by the definition of trivial dominance for all f, g ∈ RX and s : Y → X.

Note G.7 (Trivial linear dominance has lots of nice properties?).
Trivial linear dominance satisfies all of the desirable properties, except
those of non-triviality. This underlines the importance of the non-triviality
properties. �

Note G.8 (Equivalent definitions). Suppose local linear dominance is
defined so that ∅ ∈ F(X), for all X ∈ U . Then it is equivalent to trivial
linear dominance. �

G.2 Asymptotic linear dominance

Recall the definition of asymptotic linear dominance from Chapter 1:

Definition G.9 (Asymptotic linear dominance). Asymptotic linear
dominance O is defined by g ∈ OX(f) if and only if

∃c ∈ R>0,∃y ∈ Rd :
(
g|X≥y

)
≤ c
(
f |X≥y

)
, (G.10)
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for all f, g ∈ RX , and all X ∈ U , where U =
⋃
d∈N>0 P

(
Rd
)
.

Theorem G.11 (Asymptotic linear dominance is local linear dom-
inance). The family F =

{{
X≥y : y ∈ Rd

}
: X ∈ U

}
is a family of filter

bases with induced sub-structure.

Proof.
Directedness

Let X ⊂ Rd, and A,B ∈ F(X). Then there exist y1, y2 ∈ Rd, such that
A = X≥y1 , and B = X≥y2 . Let y := sup≤{y1, y2}, and C := X≥y. Then
C ∈ F(X), and C ⊂ A ∩B.
Induced sub-structure

Let D ⊂ X ⊂ Rd. Then

F(D) =
{
D≥y : y ∈ Rd

}
=
{
X≥y ∩D : y ∈ Rd

}
.

(G.12)

Note G.13 (Intrinsic pitfall). Let us consider a variant of asymptotic
linear dominance, where F(X) =

{
X≥y : y ∈ X

}
, when X ⊂ Rd. We call

this an intrinsic definition — in contrast to the extrinsic (y ∈ Rd) definition
we have given. Then F(X) is not a filter basis, and the definition fails
many properties.

An example is given by X = (−∞, 1) × R ∪ [1,∞) × (−∞, 1), y1 =
(0, 1) ∈ X, and y2 = (1, 0) ∈ X. Then X≥y1 ∩X≥y2 = ∅, but there is no
y3 ∈ X such that X≥y3 = ∅. �

Theorem G.14 (One-separation for O). n 6∈ ON>0(1).

Proof. O has one-separation if and only if
(
∀A ∈ F

(
N>0) : |A| 6∈ N

)
by [One-

separation for O characterized] (D.18). Let X := N>0 and A ∈ F(X). Then
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there exists y ∈ N such that A = X≥y. Let f : A→ N be such that f(x) = x−y.
Let x1, x2 ∈ A. Then

f(x1) = f(x2)
⇐⇒ x1 − y = x2 − y
⇐⇒ x1 = x2.

(G.15)

Therefore f is injective. Let z ∈ N. Then f(z+ y) = (z+ y)− y = z. Therefore
f is surjective. Since f is a bijection between A and N, |A| = |N| 6∈ N. Therefore
one-separation holds for O.

Theorem G.16 (Sub-composability for O for fixed s : Y → X). Let
dx, dy ∈ N>0, X ∈ U be such that X ⊂ Rdx , Y ∈ U be such that Y ⊂ Rdy ,
and s : Y → X. Then sub-composability holds for O and s if and only if

∀x∗ ∈ Rdx ,∃y∗ ∈ Rdy : −→s
(
Y ≥y

∗
)
⊂ X≥x

∗
. (G.17)

Proof. Substitute the filter bases of O into [Sub-composability for O for fixed
s : Y → X] (D.35).

Theorem G.18 (Injective sub-composability fails for O in N2). O
does not have injective sub-composability from N2 to N.

Proof. Let X := N2, x∗ := (1, 0) ∈ X, Y := N, y∗ ∈ N, and s : Y → X be such
that s(n) = (0, n). Then −→s

(
Y ≥y

∗) ∩X≥x∗ = ∅. Since −→s
(
Y ≥y

∗) is non-empty,
−→s
(
Y ≥y

∗) 6⊂ X≥x
∗ . Injective sub-composability fails by [Sub-composability

for O for fixed s : Y → X] (G.16).

Theorem G.19 (Injective sub-composability fails for O in Z). O
does not have injective sub-composability from Z to N.

Proof. Let X := Z, Y = N, x∗ := 0 ∈ X, and s : Y → X be such that
s(n) = −(n+ 1). Then −→s

(
Y ≥y

∗) ∩X≥x∗ = ∅, for all y∗ ∈ Y . Since −→s
(
Y ≥y

∗)
is non-empty, −→s

(
Y ≥y

∗) 6⊂ X≥x
∗ . Injective sub-composability fails by [Sub-

composability for O for fixed s : Y → X] (G.16).
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Theorem G.20 (Extensibility for O). O has extensibility.

Proof. Let A ∈ F(X) and B = A×Y . Then B ∈ F(X × Y ), and
−−−−−→
[X × Y ](B) =

A. The result follows by [Characterization of Extensibility for O] (D.48).

G.3 Co-asymptotic linear dominance

Recall the definition of co-asymptotic linear dominance from Chapter 1:

Definition G.21 (Coasymptotic linear dominance). Coasymptotic
linear dominance O is defined by g ∈ OX(f) if and only if

∃c ∈ R>0,∃y ∈ Rd :
(
g|
(
X \X<y

))
≤ c
(
f |
(
X \X<y

))
. (G.22)

for all f, g ∈ RX , and all X ∈ U , where U =
⋃
d∈N>0 P

(
Rd
)
.

Theorem G.23 (Co-asymptotic linear dominance is local linear
dominance). The family F =

{{
(X \X<y) : y ∈ Rd

}
: X ∈ U

}
is a fam-

ily of filter bases with induced sub-structure.

Proof.
Directedness

Let X ⊂ Rd, and A,B ∈ F(X). Then there exists y1, y2 ∈ Rd, such that
A = (X \X<y1) and B = (X \X<y2). Let y := sup≤{y1, y2}, and C :=
(X \X<y). Then C ∈ F(X) and C ⊂ A ∩B.
Induced sub-structure

Let D ⊂ X ⊂ Rd. Then

F(D) =
{(
D \D<y

)
: y ∈ Rd

}
=
{(
X \X<y

)
∩D : y ∈ Rd

}
.

(G.24)
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Note G.25 (Intrinsic pitfall). The same intrinsic pitfall as described in
Note G.13 for asymptotic linear dominance also holds for co-asymptotic
linear dominance. �

Theorem G.26 (One-separation for O). n 6∈ ON>0(1).

Proof. The proof is the same as in [One-separation for O] (G.14), since co-
asymptotic linear dominance is equivalent to asymptotic linear dominance in
N>0.

Theorem G.27 (Composability for O for fixed s : Y → X). Let
dx, dy ∈ N>0, X ∈ U be such that X ⊂ Rdx , Y ∈ U be such that Y ⊂ Rdy ,
and s : Y → X. Then composability holds for O and s if and only if

∀x∗ ∈ Rdx ,∃y∗ ∈ Rdy : −→s
((
Y \ Y <y

∗
))
⊂
(
X \X<x∗

)
. (G.28)

Proof. Substitute the filter bases of O into [Sub-composability for O for fixed
s : Y → X] (D.35).

Theorem G.29 (Injective sub-composability fails for O in Z). O
does not have injective sub-composability.

Proof. Let X := Z, Y = N, x∗ := 0 ∈ X, and s : Y → X be such that
s(n) = −(n+1). Then −→s

((
Y \ Y <y∗

))
∩
(
X \X<x∗

)
= ∅, for all y∗ ∈ Y . Since

−→s
((
Y \ Y <y∗

))
is non-empty, −→s

((
Y \ Y <y∗

))
6⊂
(
X \X<x∗

)
. Injective sub-

composability fails by [Composability for O for fixed s : Y → X] (G.27).

Theorem G.30 (Extensibility fails for O). O does not have extensi-
bility.

Proof. Let A = N>0. For any B ∈ F
(
N2), 0 ∈

−−−−−→
[N× N](B), but 0 6∈ A.

Extensibility fails by [Characterization of Extensibility for O] (D.48).
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Theorem G.31 (O is equal to O in Nd).

OX = OX, (G.32)

for all X ⊂ Nd.

Proof. Let d ∈ N>0, X ⊂ Nd, f ∈ RX , and x ∈ Nd. Then (X \X<x) ∈ P(X),
and therefore OX(f) ⊂ OX(f). Let A ∈ P(X), and y = 1 + sup≤(X \A). Then
(X \X<y) ⊂ A, and therefore OX(f) ⊂ OX(f).

Theorem G.33 (Injective composability holds for O in Nd). O has
injective composability in Nd.

Proof. This follows from [O is equal to O in Nd] (G.31) and [Injective com-
posability for O] (G.49).

G.4 Cofinite linear dominance

Recall the definition of cofinite linear dominance from Chapter 1:

Definition G.34 (Cofinite linear dominance). Cofinite linear domi-
nance O is defined by g ∈ OX(f) if and only ifa

∃c ∈ R>0,∃A ∈ P(X) : (g|A) ≤ c(f |A), (G.35)

for all f, g ∈ RX , and all sets X.
aP(X) = {A ∈ P(X) : |X \A| <∞}.

Theorem G.36 (Cofinite linear dominance is local linear domi-
nance). The family

{
P(X) : X ∈ U

}
is a family of filter bases with in-

duced sub-structure.

Proof.
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Directedness

Let A,B ∈ F(X), where X ∈ U . Then we may choose C := A ∩B ∈ F(X), so
that C ⊂ A ∩B.
Induced sub-structure

Let D ⊂ X, where X ∈ U . If B ∈ F(D), then B = D ∩ (X \ (D \ B)),
and (X \ (D \B)) ∈ F(X). If A ∈ F(X), then A ∩D ∈ F(D).

Note G.37 (Fréchet filter). The filter basis for cofinite linear dominance
is also known as the Fréchet filter. �

Theorem G.38 (One-separation for O). O has one-separation.

Proof. O has one-separation if and only if
(
∀A ∈ F

(
N>0) : |A| 6∈ N

)
by [One-

separation for O characterized] (D.18). Let X := N>0 and A ∈ F(X) = P(X).
Let f : A→ N be such that f(n) = |A<n|. Then f is a bijection between A and
N, and so |A| = |N| 6∈ N. Therefore one-separation holds for O.

Theorem G.39 (Sub-composability for O for fixed s : Y → X). Let
X,Y ∈ U , and s : Y → X. Then O has sub-composability for s if and only
if s is finite-to-one:

∀x ∈ X : |←−s ({x})| ∈ N. (G.40)

Proof. The O has sub-composability for s if and only if

∀AX ∈ F(X),∃AY ∈ F(Y ) : −→s (AY ) ⊂ AX (G.41)

by [Sub-composability for O for fixed s : Y → X] (D.35). Substituting the
filter bases of O, this is equivalent to

∀AX ∈ P(X),∃AY ∈ P(Y ) : −→s (AY ) ⊂ AX . (G.42)

We will show equivalence to this formula.
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=⇒

Suppose there exists x ∈ X such that |←−s ({x})| 6∈ N. Then |Y | 6∈ N, and
therefore ∅ 6∈ P(Y ). Let AX = X \ {x} ∈ P(X), and AY ∈ P(Y ). Then
AY 6= ∅, and AY ∩←−s ({x}) 6= ∅, which is equivalent to x ∈ −→s (AY ). Therefore
−→s (AY ) 6⊂ AX ; O does not have sub-composability for s.
⇐=

Let AX ∈ P(X) be such that X \ AX = {x1, . . . , xn}, and AY = ←−s (AX).
Then −→s (AY ) = AX , and

|Y \AY | = |Y \←−s (AX)|
= |←−s (X \AX)|
= |←−s ({x1, . . . , xn})|
≤ |←−s ({x1})|+ · · ·+ |←−s ({xn})|
∈ N.

(G.43)

Therefore AY ∈ P(Y ); O has sub-composability for s.

Theorem G.44 (Sub-composability for O for positive f ∈ RX). Let
X,Y ∈ U , s : Y → X, and f ∈ RX>0. Then

OX(f) ◦ s ⊂ OX(f ◦ s). (G.45)

Proof. It holds that |X \A| <∞, for all A ∈ F(X), X ∈ U . The claim follows
from [Sub-composability for O for positive functions] (D.43).

Theorem G.46 (Sub-composability fails for O). O does not have sub-
composability.

Proof. Let s : N→ N be such that

s(n) =
{

0, n ∈ 2N,
n, n ∈ 2N + 1.

(G.47)

Then |←−s ({0})| 6∈ N, and so sub-composability fails for O and s by [Sub-
composability for O for fixed s : Y → X] (G.39). For example, let f̂ : N→ N
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be such that f̂(0) > 0 and f : N → N be such that f(0) = 0 and f̂ ∈ ON(f).
Then

(
f̂ ◦ s

)
6∈ ON(f ◦ s).

Theorem G.48 (Subset-summability fails for O). O does not have
subset-summability.

Proof. Since subset-summability implies sub-composability, and sub-compos-
ability does not hold by [Sub-composability fails for O] (G.46), neither does
subset-summability.

Theorem G.49 (Injective composability for O). O has injective com-
posability.

Proof. Let X,Y ∈ U , and s : Y → X be injective. Then |←−s ({x})| ≤ 1, for
all x ∈ X. Therefore O has sub-composability for s by [Sub-composability
for O for fixed s : Y → X] (G.39). Since O has order-consistency by [Order-
consistency for O] (D.6), and locality by [Locality for O] (D.14), O has injective
super-composability by [Injective super-composability is implied] (C.13).

Theorem G.50 (Extensibility fails for O). O does not have extensi-
bility.

Proof. Let A = N>0. For any B ∈ F
(
N2), 0 ∈

−−−−−→
[N× N](B), but 0 6∈ A.

Extensibility fails by [Characterization of Extensibility for O] (D.48).

G.5 Linear dominance

Recall the definition of linear dominance from Chapter 1:

Definition G.51 (Full linear dominance). Full linear dominance O is
defined by g ∈ OX(f) if and only if

∃c ∈ R>0 : g ≤ cf, (G.52)

for all f, g ∈ RX , and all X ∈ U , where U is the class of all sets.
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Theorem G.53 (Linear dominance is local linear dominance). The
family {{X} : X ∈ U} is a family of filter bases with induced sub-structure.

Proof.
Directedness

Let A,B ∈ F(X), where X ∈ U . Then A = X = B, and we may choose
C := X ∈ F(X), so that C ⊂ A ∩B.
Induced sub-structure

Let D ⊂ X, where X ∈ U . Then F(D) = {D} = {A ∩D : A ∈ F(X)}.

Note G.54. The primitive properties of linear dominance are proved in
Section 4.1. �

Theorem G.55 (Extensibility for O). O has extensibility.

Proof. Let A ∈ F(X) and B = X×Y . Then A = X and B ∈ F(X × Y ). Since
−−−−−→
[X × Y ](B) = X = A, the result follows by [Characterization of Extensibility
for O] (D.48).

G.6 Affine dominance

Recall the definition of affine dominance from Chapter 1:

Definition G.56 (Affine dominance). Affine dominance O is defined
by g ∈ OX(f) if and only if

∃c ∈ R>0 : g ≤ cf + c, (G.57)

for all f, g ∈ RX , and all X ∈ U , where U is the class of all sets.

Note G.58. Affine dominance is not a local linear dominance. �

We shall apply the following lemma without mentioning it, since it is used
in almost every proof.
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Theorem G.59 (Simplification lemma for O). Let I be a finite set,
Xi ∈ U , fi ∈ RXi

, and f̂i ∈ OXi(fi), for all i ∈ I. Then there exists
c ∈ R>0, such that

f̂i ≤ cfi + c, (G.60)

for all i ∈ I.

Proof. There exists ci ∈ R>0, such that f̂i ≤ cifi + ci, for all i ∈ I. Let
c = max{ci : i ∈ I}. Then f̂i ≤ cfi + c, for all i ∈ I.

Theorem G.61 (Order-consistency for O). Let X ∈ U , and f, g ∈ RX .
Then

f ≤ g =⇒ OX(f) ⊂ OX(g). (G.62)

Proof. Let f̂ ∈ OX(f). Then there exists c ∈ R>0 such that f̂ ≤ cf + c. Since
f ≤ g, it follows that f̂ ≤ cg + c. Therefore f̂ ∈ OX(g).

Theorem G.63 (Transitivity for O). Let X ∈ U , and f, g, h ∈ RX .
Then

(f ∈ OX(g) and g ∈ OX(h)) =⇒ f ∈ OX(h). (G.64)

Proof. Let f ∈ OX(g), and g ∈ OX(h). Then there exists c ∈ R>0, such that
f ≤ cg + c and g ≤ ch+ c. It follows that

f ≤ c(ch+ c) + c

= c2h+ (c2 + c)
≤ (c2 + c)h+ (c2 + c).

(G.65)

Therefore f ∈ OX(h).

Theorem G.66 (Locality for O). Let X ∈ U , f, g ∈ RX , and C ⊂ P(X)

171



Appendix G. Comparison of definitions

be a finite cover of X. Then

∀D ∈ C : (f |D) ∈ OD(g|D) =⇒ f ∈ OX(g). (G.67)

Proof. Assume (f |D) ∈ OD(g|D), for all D ∈ C. Since C is finite, there exists
c ∈ R>0, such that (f |D) ≤ c(g|D) + c, for all D ∈ C. Since C covers X,
f ≤ cg + c. Therefore f ∈ OX(g).

Theorem G.68 (Zero-separation fails for O). Let X ∈ U be non-
empty. Then

OX(1) = OX(0). (G.69)

Proof. OX has order-consistency by [Order-consistency for O] (G.61), transi-
tivity by [Transitivity for O] (G.63), and orderness by [Orderness is implied]
(C.10). It holds that (x 7→ 1) ≤ 1(x 7→ 0) + 1, for all x ∈ X. Therefore
1 ∈ OX(0). By orderness, OX(1) ⊂ OX(0). By order-consistency, 0 ∈ OX(1).
By orderness, OX(1) ⊃ OX(0).

Theorem G.70 (One-separation for O).

n 6∈ ON>0(1). (G.71)

Proof. It holds that n > c1 + c, for all c ∈ R>0, and n ∈ N>2c. Therefore
n 6∈ ON>0(1).

Theorem G.72 (Scale-invariance for O). Let X ∈ U , f ∈ RX , and
α ∈ R>0. Then

OX(αf) = OX(f). (G.73)

Proof.
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⊂

Assume f̂ ∈ OX(αf). Then there exists c ∈ R>0, such that

f̂ ≤ c(αf) + c

≤ max(cα, c)f + max(cα, c).
(G.74)

Therefore f̂ ∈ OX(f).
⊃

Assume f̂ ∈ OX(f). Then there exists c ∈ R>0, such that

f̂ ≤ cf + c

= (c/α)(αf) + c

≤ max(c/α, c)(αf) + max(c/α, c).
(G.75)

Therefore f̂ ∈ OX(αf).

Theorem G.76 (Composability for O). Let X,Y ∈ U , f ∈ RX , and
s : Y → X. Then

OX(f) ◦ s ⊂ OY(f ◦ s), (G.77)

Proof. Let f̂ ∈ OX(f). Then there exists c ∈ R>0 such that f̂ ≤ cf + c. This
implies (f̂ ◦ s) ≤ c(f ◦ s) + c. Therefore (f̂ ◦ s) ∈ OY(f ◦ s).

Theorem G.78 (Sub-homogeneity for O characterized).

f OX(g) ⊂ OX(fg) ⇐⇒ f ∈ OX(fg), (G.79)

for all f, g ∈ RX .

Proof. OX has order-consistency by [Order-consistency for O] (G.61).
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=⇒

Suppose f 6∈ OX(fg). Let ĝ ∈ RX be such that ĝ = 1. Then f ∈ OX(f)
by order-consistency, and ĝ ∈ OX(g), since ĝ(x) = 1 ≤ 1g(x) + 1, for all x ∈ X.
Then fĝ = f 6∈ OX(fg). Therefore f OX(g) 6⊂ OX(fg).
⇐=

Suppose f ∈ OX(fg) and ĝ ∈ OX(g). Then there exists c ∈ R>0 such that

f ≤ cfg + c

ĝ ≤ cg + c.
(G.80)

Therefore
fĝ ≤ f(cg + c)

= cfg + cf

≤ cfg + c(cfg + c)
≤ (c2 + c)fg + c2

≤ (c2 + c)fg + (c2 + c).

(G.81)

Therefore fĝ ∈ OX(fg).

Theorem G.82 (Sub-homogeneity in N fails for O). There exists
f, g ∈ RN>0 such that f(N>0) ⊂ N>0, and

f ON>0(g) 6⊂ ON>0(fg). (G.83)

Proof. Let f ∈ RN>0 be such that f(n) = n, and g ∈ RN>0 be such that
g(n) = 1/n. Then

f(d3ce) = d3ce
> c+ c

= cf(d3ce)g(d3ce) + c,

(G.84)

for all c ∈ R>0. Therefore f 6∈ OX(fg), and so sub-homogeneity in N fails by
[Sub-homogeneity for O characterized] (G.78).
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Theorem G.85 (Sub-homogeneity in 1/N>0 for O). Let X ∈ U , and
f, u ∈ RX be such that −→u (X) ⊂ 1/N>0. Then

uOX(f) ⊂ OX(uf). (G.86)

Proof. Let f̂ ∈ OX(f). Then there exists c ∈ R>0, such that

f̂ ≤ cf + c. (G.87)

This implies
uf̂ ≤ u(cf + c)

= c(uf) + uc

≤ c(uf) + c.

(G.88)

Therefore uf̂ ∈ OX(uf).

Theorem G.89 (Extensibility for O). O has extensibility.

Proof. Suppose f ∈ OX(g). Then there exists c ∈ R>0 such that

f ≤ cg + c. (G.90)

Then
f ◦ [X × Y ] ≤ c(g ◦ [X × Y ]) + c. (G.91)

Therefore O has extensibility.

Theorem G.92 (Super-homogeneity fails for O). There exists f, g ∈
RX such that

f OX(g) 6⊃ OX(fg). (G.93)

Proof. Let f = 0, and ĥ ∈ RX be such that ĥ = 1. Then ĥ ≤ 1fg + 1, and
so ĥ ∈ OX(fg). For all ĝ ∈ OX(g) it holds that fĝ = 0 6= 1 = ĥ. Therefore
f OX(g) 6⊃ OX(fg).
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Theorem G.94 (Super-multiplicativity for O). Let f, g ∈ RX . Then

OX(f) OX(g) ⊃ OX(fg). (G.95)

Proof. Let ĥ ∈ OX(fg). Then there exists c ∈ R>0 such that

ĥ ≤ cfg + c. (G.96)

Let ĝ ∈ RX be such that ĝ(x) = max(g(x), 1). Since max(g(x), 1) ≤ 1g(x) + 1,
it holds that ĝ ∈ OX(g). Then

ĥ

ĝ
≤ cf g

ĝ
+ c

ĝ

≤ cf + c.

(G.97)

Let f̂ ∈ RX be such that f̂ = ĥ/ĝ. By the above, f̂ ∈ OX(f). In addition,
f̂ ĝ = ĥ. Therefore ĥ ∈ OX(f) OX(g).

Theorem G.98 (Power-homogeneity for O). Let X ∈ U , f ∈ RX ,
and α ∈ R>0. Then

OX(f)α = OX(fα). (G.99)

Proof. O has locality by [Locality for O] (G.66).
⊂

Let f̂ ∈ OX(f). Then there exists c ∈ R>0 such that

f̂ ≤ cf + c. (G.100)

Let α ∈ R>0. Since positive powers are increasing,

f̂α ≤ (cf + c)α

= cα(f + 1)α.
(G.101)

Let F = {x ∈ X : f(x) ≥ 1}. Then for x ∈ F ,

(f(x) + 1)α ≤ (f(x) + f(x))α

= 2αf(x)α.
(G.102)
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Let F = X \ F . Then for x ∈ F ,

(f(x) + 1)α ≤ (1 + 1)α

= 2α.
(G.103)

Therefore,
f ≤ 2α(fα + 1)

= 2αfα + 2α.
(G.104)

It follows that
f̂α ≤ cα2α(fα + 1), (G.105)

which shows that f̂α ∈ OX(fα).
⊃

Let α ∈ R>0, and ĝ ∈ OX(fα). Then there exists c ∈ R>0 such that

ĝ ≤ cfα + c. (G.106)

Since positive powers are increasing,

ĝ1/α ≤ (cfα + c)1/α

= c1/α(fα + 1)1/α.
(G.107)

Similarly to above, we can prove that ĝ1/α ∈ OX(f). Therefore, let f̂ ∈ RX be
such that f̂ = ĝ1/α. Then f̂ ∈ OX(f) and f̂α = ĝ. Therefore ĝ ∈ OX(f)α.

Theorem G.108 (Subset-sum rule for O in some cases). Let X,Y ,
Z ∈ U , S : X → P̂(Y × Z), a ∈ RZ , f ∈ RY , and f̂ ∈ OY(f). Then
subset-summability holds for O if

∃M ∈ R≥0,∀x ∈ X :
∑

(y,z)∈Sx

a(z) ≤M. (G.109)

Proof. Let T : RY → RX such that

T (f) =

y 7→ ∑
(y,z)∈Sx

a(z)f(y)

. (G.110)
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There exists c ∈ R>0 such that f̂ ≤ cf + c. It follows that

T (f̂) ≤ cT (f) + c
∑

(y,z)∈Sx

a(z)

≤ cT (f) + cM

≤ max(cM, c)T (f) + max(cM, c).

(G.111)

Therefore T (f̂) ∈ OY(T (f)), and so subset-summability holds.

Note G.112 (Subset-sum rule for O). It is open to us to characterize
when exactly subset-summability holds for O. By [Affine containment]
(G.117) we would expect subset-summability to fail, since subset-summa-
bility does not hold for O either. �

Theorem G.113 (Zero-triviality fails for O). O does not have zero-
triviality.

Proof. It holds that
1 ≤ 1 · 0 + 1. (G.114)

Therefore 1 ∈ ON>0(0), and ON>0(0) 6= {0}.

G.7 Containment relations

Analysis of local linear dominance reveals that making the filter basis sets larger
increases the number of fulfilled desirable properties — provided that at least
one-separation is satisfied.

Trivial linear dominance has the smallest filter basis sets. It satisfies all of
the desirable properties except those of non-triviality. Its worst defect is the
failure of one-separation. In fact, every function in RX is equivalent for every
X ∈ U .

Asymptotic linear dominance has the next smallest filter basis sets. Its
worst defect is the failure of sub-composability in Nd.

Co-asymptotic linear dominance improves upon asymptotic linear dominance
by satisfying injective sub-composability in Nd. Its worst defects are the failure
of sub-composability in Nd, and the failure of injective sub-composability in Z.
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Cofinite linear dominance improves upon coasymptotic linear dominance by
satisfying injective sub-composability in all universes. Its worst defect is the
failure of sub-composability in N.

Linear dominance has the largest filter basis sets, and fulfills all of the
desirable properties. We formalize the intuitive size-comparison of the filter
basis sets by the following theorem.

Theorem G.115 (Containment in Rd).

OX(f) ⊂ OX(f) ⊂ OX(f) ⊂ OX(f) ⊂ OX(f), (G.116)

for all X ⊂ Rd and f ∈ RX .

Proof. Assume d ∈ N>0 and X ⊂ Rd.
OX(f) ⊂ OX(f)

Suppose f̂ ∈ OX(f). Then there exists c ∈ R>0 such that f̂ ≤ cf . Since
X ∈ P(X), it holds that

(
f̂ |X

)
≤ c(f |X). Therefore f̂ ∈ OX(f).

OX(f) ⊂ OX(f)

Suppose f̂ ∈ OX(f). Then there exists c ∈ R>0 and A ∈ P(X) such that(
f̂ |A

)
≤ c(f |A). Let y = sup≤(X \A) + 1. Then (X \X<y) ⊂ A, and so(

f̂ |(X \X<y)
)
≤ c(f |(X \X<y)). Therefore f̂ ∈ OX(f).

OX(f) ⊂ OX(f)

Suppose f̂ ∈ OX(f). Then there exist c ∈ R>0 and y ∈ Rd such that(
f̂ |(X \X<y)

)
≤ c(f |(X \X<y)). Since X≥y ⊂ (X \X<y), it holds that(

f̂ |X≥y
)
≤ c
(
f |X≥y

)
. Therefore f̂ ∈ OX(f).

OX(f) ⊂ OX(f)

Suppose f̂ ∈ OX(f). Then f̂ ∈ OX(f), since every function is equivalent
under trivial linear dominance.

Affine dominance has surprisingly good properties; we were especially sur-
prised to be able to prove power-homogeneity for it. Its worst defect is the
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failure of sub-homogeneity. In terms of containment, affine dominance has
smaller filter bases than cofinite linear dominance.

Theorem G.117 (Affine containment).

OX(f) ⊂ OX(f), (G.118)

for all X ∈ U and f ∈ RX .

Proof. Let f̂ ∈ OX(f). Then there exists A ∈ P(X) and c ∈ R>0 such that(
f̂ |A

)
≤ c(f |A). Since A is cofinite, let d = max

(
f̂(X \A) ∪ {c}

)
. Then

f̂ ≤ df + d. Therefore f̂ ∈ OX(f).
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Proofs of minimality

In this section we consider additional candidate definitions. These definitions
are used — together with those in Appendix G — to prove the minimality of
pre-primitive properties in Chapter 4.

H.1 Elementwise dominance

Definition H.1 (Elementwise dominance). Elementwise dominance
O≤ is defined by f ∈ O≤X(g) if and only if

f ≤ g, (H.2)

for all g ∈ RX , and all X ∈ U , where U is the class of all sets.

Theorem H.3 (Order-consistency for O≤). O≤ has order-consistency.

Proof. By definition.

Theorem H.4 (Transitivity for O≤). O≤ has transitivity.

Proof. Let f ∈ O≤X(g), g ∈ O≤X(h), and h ∈ RX . Then

f ≤ g,
g ≤ h.

(H.5)

181



Appendix H. Proofs of minimality

Therefore
f ≤ h. (H.6)

Theorem H.7 (Scale-invariance fails for O≤). O≤ does not have scale-
invariance.

Proof. Let f ∈ O≤X(g) be such that f 6= 0 and α ∈ R>0 be such that α < 1. Let
p ∈ X be such that f(p) > 0. Then

f(p) > αf(p). (H.8)

Theorem H.9 (Locality for O≤). O≤ has locality.

Proof. Let C ⊂ P(X) be a finite cover of X, and suppose (f |D) ∈ O≤X(g|D) for
all D ∈ C. Then

(f |D) ≤ (g|D), (H.10)
for all D ∈ C. This implies

f ≤ g. (H.11)

Theorem H.12 (One-separation for O≤). O≤ has one-separation.

Proof. It holds that n > 1 for n = 2.

Theorem H.13 (Sub-homogeneity for O≤). O≤ has sub-homogeneity.

Proof. Let f ∈ O≤X(g), and g, u ∈ RX . Then

f ≤ g. (H.14)

This implies
uf ≤ ug. (H.15)
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Theorem H.16 (Sub-composability for O≤). O≤ has sub-composability.

Proof. Let f ∈ O≤X(g), and s : Y → X. Then

f ≤ g. (H.17)

This implies
f ◦ s ≤ g ◦ s. (H.18)

H.2 Multiple dominance

Definition H.19 (Multiple dominance). Multiple dominance O· is de-
fined by f ∈ O· X(g) if and only if there exists c ∈ R>0 such that

f = cg, (H.20)

for all g ∈ RX , and all X ∈ U , where U is the class of all sets.

Theorem H.21 (Order-consistency fails for O· ). O· does not have
order-consistency.

Proof. Let f, g ∈ RN>0 be such that f = 0 and g = 1. Then f ≤ g, and

0 = f 6= cg = c, (H.22)

for all c ∈ R>0.

Theorem H.23 (Transitivity for O· ). O· has transitivity.

Proof. Let f ∈ O· X(g), g ∈ O· X(h), and h ∈ RX . Then there exists c, d ∈ R>0

such that
f = cg,

g = dh.
(H.24)

Therefore
f = cdh. (H.25)
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Theorem H.26 (Scale-invariance for O· ). O· has scale-invariance.

Proof. Let f ∈ O· X(g), and α ∈ R>0. Then there exists c ∈ R>0 such that

f = cg. (H.27)

This implies
f = c

1
α
αg. (H.28)

Theorem H.29 (Locality fails for O· ). O· does not have locality.

Proof. Let f ∈ RN be such that

f(n) =
{

2, n > 0,
1, n = 0.

(H.30)

Let g ∈ RN be such that g = 4. Then there is no c ∈ R>0 such that f = cg.

Theorem H.31 (One-separation for O· ). O· has one-separation.

Proof. It holds that n > c for n = dce+ 1, for all c ∈ R>0.

Theorem H.32 (Sub-homogeneity for O· ). O· has sub-homogeneity.

Proof. Let f ∈ O· X(g), and g, u ∈ RX . Then there exists c ∈ R>0 such that

f = cg. (H.33)

This implies
uf = cug. (H.34)
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Theorem H.35 (Sub-composability for O· ). O· has sub-composability.

Proof. Let f ∈ O· X(g), and s : Y → X. Then there exists c ∈ R>0 such that

f = cg. (H.36)

This implies
(f ◦ s) = c(g ◦ s). (H.37)

H.3 Non-transitive dominance

Definition H.38 (Non-transitive dominance). Non-transitive domi-
nance O! is defined by f ∈ O! X(g) if and only if(

∃c ∈ R>0 : f = cg
)
or (f ≤ 2g), (H.39)

for all g ∈ RX , and all X ∈ U , where U is the class of all sets.

Theorem H.40 (Order-consistency for O! ). O! has order-consistency.

Proof. Let f, g ∈ RN>0 be such f ≤ g. Then

f ≤ 2g. (H.41)

Theorem H.42 (Transitivity fails for O! ). O! does not have transitivity.

Proof. Let p ∈ X, and f, g, h ∈ RX be such that h = 1, g = 2, and

f(x) =
{

4 x 6= p,

3 otherwise.
(H.43)

Then
f ≤ 2g = 4
g ≤ 2h = 2,

(H.44)

so that f ∈ O! X(g) and g ∈ O! X(h). However, f(p) > 2h(p), and there is no
c ∈ R>0 such that f = ch. Therefore f 6∈ O! X(h).
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Theorem H.45 (Scale-invariance for O! ). O! has scale-invariance.

Proof. Let α ∈ R>0. Then
f = 1

α
αf. (H.46)

Theorem H.47 (Locality fails for O! ). O! does not have locality.

Proof. Let f, g ∈ RN be such that g = 1, and

f(n) =
{

4, n > 0,
3, n = 0.

(H.48)

Then (f |{0}) = 3 = 3(g|{0}), and
(
f |N>0) = 4 = 4

(
g|N>0). Therefore

(f |{0}) ∈ O! {0}(g) and
(
f |N>0) ∈ ON>0

(
g|N>0). However, f(0) > 2g(0), and

there is no c ∈ R>0 such that f = cg.

Theorem H.49 (One-separation for O! ). O! has one-separation.

Proof.

n ∈ O! N>0(1)
⇐⇒

(
∃c ∈ R>0 : ∀n ∈ N>0 : n = c

)
or
(
∀n ∈ N>0 : n ≤ 2

)
,

(H.50)

which is false.

Theorem H.51 (Sub-homogeneity for O! ). O! has sub-homogeneity.

Proof. Let f ∈ O! X(g), and g, u ∈ RX . Suppose there exists c ∈ R>0 such that

f = cg. (H.52)

Then
uf = cug. (H.53)

Suppose f ≤ 2g. Then
uf ≤ 2(ug). (H.54)
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Theorem H.55 (Sub-composability for O! ). O! has sub-composability.

Proof. Let f ∈ O! X(g), and g, u ∈ RX . Suppose there exists c ∈ R>0 such that
f = cg. Then

f ◦ s = c(g ◦ s). (H.56)

Suppose f ≤ 2g. Then
f ◦ s ≤ 2(g ◦ s). (H.57)

H.4 Power dominance

Definition H.58 (Clamped power). The clamped k-power, where k ∈
N>0, is a function · k : R≥0 → R≥0 such that

xk =
{
xk x ≥ 1,
x x < 1.

(H.59)

Definition H.60 (Power dominance). Power dominance O∧ is defined
by f ∈ O∧X(g) if and only if there exists c ∈ R>0 and k ∈ N>0 such that

f ≤ cgk, (H.61)

for all g ∈ RX , and all X ∈ U , where U is the class of all sets.

Theorem H.62 (Order-consistency for O∧ ). O∧ has order-consistency.

Proof. Suppose f ≤ g. Then

f ≤ 1g1 = g. (H.63)
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Theorem H.64 (Transitivity for O∧ ). O∧ has transitivity.

Proof. Let f ∈ O∧X(g), g ∈ O∧X(h), and h ∈ RX . Then there exists c ∈ R>0

such that
f ≤ cgk,
g ≤ chk.

(H.65)

We may assume c ≥ 1. Then

f ≤ c(chk)k. (H.66)

Small values

Suppose x ∈ X is such that ch(x)k < 1. Then

f(x) ≤ c2h(x)k

≤ ck+1h(x)k
2
.

(H.67)

Large values

Suppose x ∈ X is such that ch(x)k ≥ 1 and h(x) ≥ 1. Then

f(x) ≤ c(ch(x)k)k

= ck+1h(x)k
2

≤ ck+1h(x)k
2
.

(H.68)

Suppose x ∈ X is such that ch(x)k ≥ 1 and h(x) < 1. Then

f(x) ≤ c(ch(x))k

= ck+1h(x)k

≤ ck+1h(x)k
2
.

(H.69)

Theorem H.70 (Scale-invariance for O∧ ). O∧ has scale-invariance.
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Proof. Let f ∈ RX and α ∈ R>0. Then

f = 1
α
αf

= 1
α

(αf)1
.

(H.71)

Theorem H.72 (Locality for O∧ ). O∧ has locality.

Proof. Let C ⊂ P(X) be a finite cover of X, and suppose (f |D) ∈ O∧X(g|D) for
all D ∈ C. Then there exists cD ∈ R>0 and kD ∈ N>0 such that

(f |D) ≤ cD(g|D)kD , (H.73)

for all D ∈ C. Let c = max{cD : D ∈ C} and k = max{kD : D ∈ C}. Then

f ≤ cgk. (H.74)

Theorem H.75 (One-separation for O∧ ). O∧ has one-separation.

Proof. Let c ∈ R>0. Then n > c1k for n = dce+ 1.

Lemma H.76 (Clamped power lemma).

ugk ≤ (ug)k, (H.77)

for all g ∈ R≥0, u, k ∈ N>0.

Proof.
ug < 1

Since u ≥ 1, it holds that g < 1. Then

ugk = ug

= (ug)k.
(H.78)
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ug ≥ 1 and g < 1

Then
ugk = ug

≤ (ug)k

= (ug)k.

(H.79)

ug ≥ 1 and g ≥ 1

Then
ugk = ugk

≤ ukgk

= (ug)k

= (ug)k.

(H.80)

Theorem H.81 (Sub-homogeneity in N for O∧ ). O∧ has sub-homogene-
ity in N.

Proof. Let f ∈ O∧X(g), and g, u ∈ RX be such that −→u (X) ⊂ N. Then there
exists c ∈ R>0 and k ∈ N>0 such that

f ≤ cgk. (H.82)

This implies
uf ≤ cugk

≤ c(ug)k,
(H.83)

where we used [Clamped power lemma] (H.76).

Theorem H.84 (Sub-homogeneity in 1/N>0 fails for O∧ ). O∧ does not
have sub-homogeneity in 1/N>0.
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Proof. Let f, g, u ∈ RN>0 be such that

f(n) = n2,

g(n) = n,

u(n) = n.

(H.85)

Then f ≤ 1g2. Let c ∈ R>0 and k ∈ N>0. Then the inequality

n = f/u ≤ d(g/u)m = d (H.86)

fails for n = dde+ 1.

Theorem H.87 (Sub-composability for O∧ ). O∧ has sub-composability.

Proof. Let f ∈ O∧X(g), and s : Y → X. Then there exists c ∈ R>0 and k ∈ N>0

such that
f ≤ cgk. (H.88)

This implies
(f ◦ s) ≤ c(g ◦ s)k. (H.89)
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Partitioned sets

In this section we develop some theory of partitioned sets. Partitioned sets
occur in the theory of O-notation, because the equality of O-sets in a set X —
OX(f) = OX(g) — is an equivalence relation in RX .1

Definition I.1 (Partitioned set). A partitioned set is a set X with an
associated equivalence ∼X : X ↔ X in X.

Note I.2 (Conventions). Let X and Y be partitioned sets. We will
often shorten the word partition into a single letter p. �

Definition I.3 (Partition-preserving). A function f : X → Y is p-
preserving if

x1 ∼X x2 =⇒ f(x1) ∼Y f(x2), (I.4)

for all x1, x2 ∈ X.

Note I.5 (Homomorphisms). The p-preserving functions are the ho-
momorphisms of partitioned sets; they preserve the partition structure.

�

1An equivalence relation is a reflexive, symmetric, and transitive relation.
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p-surjection

p-bijection

p-injection

p-embedding

p-preserving p-bijection

p-preserving p-surjection

p-preserving function

I.2d

I.2b

I.2f

I.2d

I.2a

I.2a

I.2g

I.2e

I.2g

I.2c

I.2a

I.2a

Figure I.1: A Hasse diagram of functions between partitioned sets, ordered by
the ‘generalizes’ partial order. The edge labels — which refer to Figure I.2 —
show that the generalizations are proper.

Definition I.6 (Partition closure). The p-closure on X is a function
· : P(X)→ P(X) such that

D = {x ∈ X : ∃d ∈ D : x ∼X d}. (I.7)

I.1 Generalized partition-inverse

Definition I.8 (Generalized partition-inverse). A generalized p-inverse
of f : X → Y is f̂ : Z → X such that

−→
f (X) ⊂ Z ⊂ Y , and

f(f̂(f(x))) ∼Y f(x), (I.9)
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(a) Partition-bijective, and with two left
p-inverses, but not p-preserving and
only one generalized p-inverse.

(b) Partition-surjective, but not parti-
tion-preserving or partition-injective.

(c) Partition-injective, but not partition-
preserving or partition-surjective.

(d) Not partition-injective, not parti-
tion-preserving, and not partition-sur-
jective.

(e) Partition-surjective, partition-pre-
serving, and with two generalized p-
inverses, but not partition-injective or
with left p-inverse.

(f) Partition-injective, and partition-
preserving, but not partition-surjective.

(g) Partition-preserving, but not parti-
tion-injective or partition-surjective.

(h) Partition-surjective, with four left p-
inverses, and four right p-inverses, but
not partition-injective.

Figure I.2: Diagrams to show that the various definitions of functions on
partitioned sets are not equivalent. Equivalent dots are connected with a solid
line.
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for all x ∈ X.

Theorem I.10 (Construction for a generalized p-inverse). Let
f : X → Y . Then f̂ : Z → X is a generalized p-inverse of f if and only if

f̂(y) ∈
←−
f
(
{y}
)
, (I.11)

for all y ∈
−→
f (X).

Proof. It holds that

f̂(f(x)) ∈
←−
f
(
{f(x)}

)
⇐⇒ f(f̂(f(x))) ∈ {f(x)}

⇐⇒ f(f̂(f(x))) ∼Y f(x),

(I.12)

for all x ∈ X.

Note I.13 (Generalized partition-inverse exists). [Construction for
a generalized p-inverse] (I.10) shows that a generalized p-inverse always
exists. �

Note I.14 (Generalized partition-inverse may not be unique). Fig-
ure I.2h shows that a function f : X → Y can have many non-equivalent
generalized p-inverses. �

I.2 Partition-injectivity and left partition-inverse

Definition I.15 (Partition-injectivity). A function f : X → Y is p-
injective, if

f(x1) ∼Y f(x2) =⇒ x1 ∼X x2, (I.16)

for all x1, x2 ∈ X.
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Definition I.17 (Left partition-inverse). A left p-inverse of f : X → Y

is a function fL : Z → X such that
−→
f (X) ⊂ Z ⊂ Y and

fL(f(x)) ∼X x, (I.18)

for all x ∈ X.

Theorem I.19 (Generalized partition-inverse is a left partition-in-
verse for a partition-injective function). Let f : X → Y be p-injective.
Then a generalized p-inverse of f is a left p-inverse of f .

Proof. Let f̂ : Z → X be a generalized p-inverse of f . By definition,

f(f̂(f(x))) ∼Y f(x), (I.20)

for all x ∈ X. Since f is p-injective,

f̂(f(x)) ∼X x, (I.21)

for all x ∈ X. Therefore f̂ is a left p-inverse of f .

Note I.22 (Generalized partition-inverse may not be a left parti-
tion-inverse). Figure I.2e shows that a generalized p-inverse may not be
a left p-inverse. �

Theorem I.23 (Left partition-inverse is a generalized partition-
inverse for a partition-preserving function). Let f : X → Y be p-
preserving. Then a left p-inverse of f is a generalized p-inverse of f .

Proof. Let fL : Z → X be a left p-inverse of f . By definition,

fL(f(x)) ∼X x, (I.24)

for all x ∈ X. Since f is p-preserving,

f(fL(f(x))) ∼Y f(x), (I.25)

for all x ∈ X. Therefore fL is a generalized p-inverse of f .
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Note I.26 (Left partition-inverse may not be a generalized parti-
tion-inverse). Figure I.2a shows a non-p-preserving function which has
two left p-inverses, but only one generalized p-inverse; a left p-inverse may
not be a generalized p-inverse. �

Theorem I.27 (Partition-injectivity is equivalent to having a p-p-
reserving left p-inverse). Let f : X → Y . Then f is p-injective if and
only if f has a p-preserving left p-inverse.

Proof.
=⇒

Let f̂ :
−→
f (X)→ X be such that

f̂(y) ∈
←−
f
(
{y}
)
. (I.28)

Then f̂ is a generalized p-inverse of f by [Construction for a generalized
p-inverse] (I.10). Since f is p-injective, f̂ is a left p-inverse by [Generalized
partition-inverse is a left partition-inverse for a partition-injective function]
(I.19). It holds that

x1, x2 ∈
←−
f
(
{y}
)

=⇒ f(x1), f(x2) ∈ {y})
=⇒ f(x1) ∼Y y ∼Y f(x2)
=⇒ x1 ∼X x2, ` f p-injective

(I.29)

for all x1, x2 ∈ X and y ∈
−→
f (X). That is, all elements in

←−
f
(
{y}
)
are equivalent

to each other, for all y ∈
−→
f (X). Let y1, y2 ∈

−→
f (X) be such that y1 ∼Y y2.

Then
{y1} = {y2}. (I.30)

This implies that
f̂(y1), f̂(y2) ∈

←−
f
(
{y1}

)
. (I.31)
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However, since all elements in
←−
f
(
{y1}

)
are equivalent to each other,

f̂(y1) ∼X f̂(y2). (I.32)

Therefore f̂ is p-preserving.
⇐=

Let fL : Z → X be a p-preserving left p-inverse of f . Then

f(x1) ∼Y f(x2)
=⇒ fL(f(x1)) ∼X fL(f(x2)) ` fL p-preserving
=⇒ x1 ∼X x2, ` fL left p-inverse of f

(I.33)

for all x1, x2 ∈ X. Therefore f is p-injective.

Note I.34 (Non-partition-preserving left p-inverse). Figure I.2h
shows that the existence of a non-p-preserving left p-inverse does not imply
p-injectivity. �

Theorem I.35 (Left p-inverses are equivalent on the image). The
left p-inverses of f : X → Y are equivalent to each other on

−→
f (X).

Proof. Suppose g : Z → X and g : W → X are left p-inverses of f . For each
y ∈
−→
f (X), there exists xy ∈ X such that y = f(xy). Since g and h are left

p-inverses,
g(y) = g(f(xy)) ∼X xy ∼X h(f(xy)) = h(y), (I.36)

for all y ∈
−→
f (X).

I.3 Partition-surjectivity and right partition-inverse

Definition I.37 (Partition-surjectivity). A function f : X → Y is
p-surjective, if

−→
f (X) = Y. (I.38)
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Note I.39 (Right partition-inverse). A right p-inverse of f : X → Y
is fR : Y → X such that

f(fR(y)) ∼Y y, (I.40)

for all y ∈ Y . �

Theorem I.41 (Partition-surjectivity is equivalent to having a
right p-inverse). Let f : X → Y . Then f is p-surjective if and only if f
has a right p-inverse.

Proof.
=⇒

Since f is p-surjective,
←−
f
(
{y}
)
6= ∅, (I.42)

for all y ∈ Y . Let f̂ : Y → X be such that

f̂(y) ∈
←−
f
(
{y}
)
. (I.43)

Then
f(f̂(y)) ∈ {y}

⇐⇒ f(f̂(y)) ∼Y y,
(I.44)

for all y ∈ Y . Therefore f̂ is a right p-inverse of f .
⇐=

Let fR : Y → X be a right p-inverse of f . Then

f(fR(y)) ∼Y y, (I.45)

for all y ∈ Y . Therefore f is p-surjective.

Theorem I.46 (Right p-inverse is order-reflecting for order-pre-
serving). Let f : X → Y be order-preserving. Then a right p-inverse of f
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is order-reflecting.

Proof. Let fR : Y → X be a right p-inverse of f . Then

fR(y1) �X fR(y2)
=⇒ f(fR(y1)) �Y f(fR(y2)) ` f order-preserving
=⇒ y1 �Y y2, ` fR right p-inverse of f

(I.47)

for all y1, y2 ∈ Y . Therefore fR is order-reflecting.

I.4 Partition-bijectivity and partition-inverse

Definition I.48 (Partition-bijectivity). A function f : X → Y is p-
bijective, if it is both p-injective and p-surjective.

Definition I.49 (Partition-inverse). A p-inverse of f is a function
f̂ : Y → X which is both a left p-inverse and a right p-inverse of f .

Theorem I.50 (Partition-bijectivity is equivalent to having a p-p-
reserving p-inverse). Let f : X → Y . Then f is p-bijective if and only
if f has a p-preserving p-inverse.

Proof.
=⇒

A p-preserving left p-inverse fL :
−→
f (X) → X of f exists by [Partition-in-

jectivity is equivalent to having a p-preserving left p-inverse] (I.27). We may
extend fL to a p-preserving left p-inverse of f on

−→
f (X). Since f is p-surjective,

−→
f (X) = Y . We then notice that the extended fL satisfies the construction
of the right p-inverse fR in [Partition-surjectivity is equivalent to having a
right p-inverse] (I.41).
⇐=

This follows from [Partition-injectivity is equivalent to having a p-preserving
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left p-inverse] (I.27) and [Partition-surjectivity is equivalent to having a right
p-inverse] (I.41).

Theorem I.51 (Partition-bijectivity implies a unique p-inverse).
Let f : X → Y be p-bijective. Then f has a unique p-inverse up to an
equivalence.

Proof. Since f is p-bijective, there exists a p-inverse g : Y → X of f by [Parti-
tion-bijectivity is equivalent to having a p-preserving p-inverse] (I.50). Sup-
pose there exists another p-inverse h : Y → X of f . Then

f(g(y)) ∼Y y ∼Y f(h(y))
=⇒ g(y) ∼X h(y), ` f p-injective

(I.52)

for all y ∈ Y .

I.5 Partition-embedding

Definition I.53 (Partition-embedding). A function f : X → Y is p-
embedding, if it is both p-preserving and p-injective.

Theorem I.54 (Partition-embedding by preimages). Let f : X → Y .
Then f is a p-embedding if and only if

←−
f
(
{f(x)}

)
= {x}, (I.55)

for all x ∈ X.

Proof.
=⇒
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It holds that

z ∈
←−
f
(
{f(x)}

)
⇐⇒ f(z) ∈ {f(x)}
⇐⇒ f(z) ∼Y f(x)
⇐⇒ z ∼X x ` f p-embedding
⇐⇒ z ∈ {x},

(I.56)

for all x ∈ X.
⇐=

To show that f is p-embedding,

x1 ∼X x2

⇐⇒ {x1} = {x2}

⇐⇒
←−
f
(
{f(x1)}

)
=
←−
f
(
{f(x2)}

)
` assumption

⇐⇒ {f(x1)} = {f(x2)} ` f p-embedding
⇐⇒ f(x1) ∼Y f(x2),

(I.57)

for all x1, x2 ∈ X.
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Preordered sets

In this section we develop some theory of preorders, generalizing the theory
of partial orders. Preordered sets occur in the theory of O-notation, because
OX(f) is a principal down-set of a preorder in RX .

Definition J.1 (Preordered set). A preordered set is a set X with an
associated preorder �X : X ↔ X.

Note J.2 (Conventions). Let X and Y be preordered sets. �

Definition J.3 (Order-preserving). A function f : X → Y is order-
preserving, or monotone, if

x1 �X x2 =⇒ f(x1) �Y f(x2), (J.4)

for all x1, x2 ∈ X.

Note J.5 (Homomorphisms). The order-preserving functions are the
homomorphisms of preordered sets; they preserve the preorder structure.

�
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Definition J.6 (Order-reflecting). A function f : X → Y is order-
reflecting, if

f(x1) �Y f(x2) =⇒ x1 �X x2, (J.7)

for all x1, x2 ∈ X.

Definition J.8 (Order-embedding). A function f : X → Y is order-
embedding, if it is both order-preserving and order-reflecting.

Definition J.9 (Order-isomorphism). A function f : X → Y is an
order-isomorphism, if it is p-surjective and order-embedding.

The relationships between such functions is given in Figure J.1, with Fig-
ure J.2 showing that the inclusions are proper.

J.1 Order and partitions

Definition J.10 (Induced equivalence). Given a preorder �X : X ↔
X, the induced equivalence is ∼X : X ↔ X such that

x1 ∼X x2 ⇐⇒ x1 �X x2 and x2 �X x1. (J.11)

Note J.12 (Relation to partitioned sets). The induced equivalence
∼X on a preordered set (X,�X) partitions X; the theory of partitioned
sets interacts with the theory of preordered sets. �

Theorem J.13 (Order-preserving is partition-preserving). Let
f : X → Y be order-preserving. Then f is p-preserving.

Proof. Let x1, x2 ∈ X be such that x1 ∼X x2. Then

x1 �X x2 =⇒ f(x1) �Y f(x2). (J.14)

Similarly,
x2 �X x1 =⇒ f(x2) �Y f(x1). (J.15)
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It follows that
f(x1) ∼Y f(x2). (J.16)

Therefore f is p-preserving.

Theorem J.17 (Order-reflecting implies partition-injective). Let
f : X → Y be order-reflecting. Then f is partition-injective.

Proof. It holds that

f(x1) ∼Y f(x2)
=⇒ f(x1) �Y f(x2) and f(x2) �Y f(x1)
=⇒ x1 �X x2 and x2 �X x1

=⇒ x1 ∼X x2,

(J.18)

for all x1, x2 ∈ X.

J.2 Order-preserving functions and down-sets

Definition J.19 (Generated down-set). The generated down-set in X
is a function ↓X( · ) : P(X)→ P(X) such that

↓X(D) = {x ∈ X : ∃d ∈ D : x �X d} (J.20)

Definition J.21 (Down-set). A subset D ⊂ X is a down-set of X, if
D = ↓X(D).

Definition J.22 (Principal down-set). A subset D ⊂ X is a principal
down-set of X, if there exists d ∈ X such that D = ↓X({d}).

Theorem J.23 (Alternative definition of down-sets). Let D ⊂ X.
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monotone function

monotone p-surjection

monotone p-bijection

monotone p-injection

order embedding

residuated p-injection

order isomorphism

residuated p-surjection

residuated function

J.2b

J.2c

J.2c

J.2e

J.2b

J.2d

J.2e

J.2a

J.2c

J.2a

J.2d

J.2e

J.2e

Figure J.1: A Hasse diagram of order-preserving functions between preordered
sets, ordered by the ‘generalizes’ partial order. Original figure was created by
David Wilding, and is used here with his permission. The edge labels — which
refer to Figure J.2 — have been added to show that the generalizations are
proper.

Then D is a down-set if and only if

∀x ∈ X,∀d ∈ D : x �X d =⇒ x ∈ D. (J.24)
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(a) Residuated (and order-preserving),
but not p-surjective or p-injective.

(b) Order-embedding (and p-injective),
but not residuated or p-surjective.

(c) Residuated and p-surjective (and
order-preserving), but not p-injective.

(d) Residuated and p-injective (and
order-preserving), but not p-surjective.

(e) Order-preserving and p-bijective,
but not order-reflecting or residuated.

(f) Order-reflecting and p-bijective, but
not order-preserving.

Figure J.2: Hasse diagrams to show that the various definitions of order-
preserving functions are not equivalent. Since all orders here are partial, the
p-prefix is redundant.

Proof. It always holds that D ⊂ {x ∈ X : ∃d ∈ D : x �X d}. Then

D = {x ∈ X : ∃d ∈ D : x �X d}
⇐⇒ D ⊃ {x ∈ X : ∃d ∈ D : x �X d}
⇐⇒ ∀x ∈ X : (∃d ∈ D : x �X d) =⇒ x ∈ D
⇐⇒ ∀x ∈ X : (∀d ∈ D : x 6�X d) or x ∈ D
⇐⇒ ∀x ∈ X,∀d ∈ D : (x 6�X d or x ∈ D)
⇐⇒ ∀x ∈ X,∀d ∈ D : x �X d =⇒ x ∈ D.

(J.25)

Theorem J.26 (Order-preservation by preimages). Let f : X → Y .
Then f is order-preserving if and only if each preimage of a down-set of Y
is a down-set of X.

Proof.
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=⇒

Let S ⊂ Y , DY = ↓Y (S), and DX =
←−
f (DY ). Let x1 ∈ X, and x2 ∈ DX

be such that x1 �X x2. Since f is order-preserving, f(x1) �Y f(x2). It holds
that f(x) ∈ DY , for all x ∈ DX . Since f(x1) �Y f(x2) ∈ DY , and DY is a
down-set, f(x1) ∈ DY . This implies x1 ∈ DX . Therefore DX is a down-set.
⇐=

Let x1, x2 ∈ X. Then there exists D ⊂ X such that

←−
f
(
↓Y
(−→
f ({x2})

))
= ↓X(D). (J.27)

Let x ∈ X. Then
x ∈
←−
f (↓Y ({f(x2)}))

⇐⇒ f(x) ∈ ↓Y ({f(x2)})
⇐⇒ f(x) �Y f(x2).

(J.28)

In particular, x2 ∈
←−
f (↓Y (f(x2))) = ↓X(D). Then

x1 �X x2

=⇒ x1 ∈ ↓X(D)

=⇒ x1 ∈
←−
f (↓Y ({f(x2)}))

=⇒ f(x1) ∈ ↓Y ({f(x2)})
=⇒ f(x1) �Y f(x2).

(J.29)

Therefore f is order-preserving.

Theorem J.30 (Order-preservation by images). Let f : X → Y .
Then f is order-preserving if and only if

−→
f (↓X(S)) ⊂ ↓Y

(−→
f (S)

)
, (J.31)

for all S ⊂ X.

Proof.

208



Appendix J. Preordered sets

=⇒

It holds that

x ∈ ↓X(S)
=⇒ ∃s ∈ S : x �X s

=⇒ ∃s ∈ S : f(x) �Y f(s) ` f order-preserving

=⇒ f(x) ∈ ↓Y
(−→
f (S)

)
,

(J.32)

for all x ∈ X.
⇐=

It holds that
x1 �X x2

=⇒ ↓X({x1}) ⊂ ↓X({x2})

=⇒
−→
f (↓X({x1})) ⊂

−→
f (↓X({x2}))

=⇒
−→
f (↓X({x1})) ⊂ ↓Y ({f(x2)})

=⇒ f(x1) ∈ ↓Y ({f(x2)})
=⇒ f(x2) �Y f(x2),

(J.33)

for all x1, x2 ∈ X. Therefore f is order-preserving.

J.3 Residuated functions

Definition J.34 (Residual). A function f̂ : Y → X is a residual of
f : X → Y , if

f(x) �Y y ⇐⇒ x �X f̂(y), (J.35)

for all x ∈ X and y ∈ Y .

Definition J.36 (Residuated). A function f : X → Y is residuated, if
it has a residual.
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Theorem J.37 (Preimage of a down-set under a residuated func-
tion). Let f : X → Y be residuated, with a residual f̂ : Y → X. Then

←−
f (↓Y (D)) = ↓X

(
f̂(D)

)
, (J.38)

for all D ⊂ Y .

Proof. ←−
f (↓Y (D)) = {x ∈ X : f(x) ∈ ↓Y (D)}

= {x ∈ X : ∃d ∈ D : f(x) �Y d}

=
{
x ∈ X : ∃d ∈ D : x �X f̂(d)

}
=
{
x ∈ X : ∃x′ ∈ f̂(D) : x �X x′

}
= ↓X

(
f̂(D)

)
.

(J.39)

Theorem J.40 (Residuated property by preimages). Let f : X → Y .
Then f is residuated if and only if for each y ∈ Y , there exists xy ∈ X such
that ←−

f (↓Y ({y})) = ↓X({xy}). (J.41)

Proof.
=⇒

Let f be residuated, and y ∈ Y . Then

←−
f (↓Y ({y})) = ↓X

({
f̂(y)

})
, (J.42)

by [Preimage of a down-set under a residuated function] (J.37). Therefore
each preimage of a principal down-set of Y is a principal down-set of X.
⇐=
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For each y ∈ Y , there exists xy ∈ X such that
←−
f (↓Y ({y})) = ↓X({xy})

⇐⇒ {x ∈ X : f(x) ∈ ↓Y ({y})} = {x ∈ X : x �X xy}
⇐⇒ {x ∈ X : f(x) �Y y} = {x ∈ X : x �X xy}
⇐⇒ ∀x ∈ X : [f(x) �Y y ⇐⇒ x �X xy].

(J.43)

Let f̂ : Y → X be such that f̂(y) = xy. By the above, f̂ is a residual of f .
Therefore f is residuated.

Theorem J.44 (Properties of a residuated function). Let f : X → Y .
Then f is residuated if and only if f is order-preserving, and there exists
order-preserving f̂ : X → Y , such that

f̂(f(x)) �X x,

f(f̂(y)) �Y y,
(J.45)

for all x ∈ X, y ∈ Y .

Proof.
=⇒

For the first relation,

f(x) �Y f(x)

⇐⇒ x �X f̂(f(x)), ` f̂ residual of f
(J.46)

for all x ∈ X. Then

x1 �X x2

=⇒ x1 �X f̂(f(x2)) ` first relation

=⇒ f(x1) �Y f(x2), ` f̂ residual of f

(J.47)

for all x1, x2 ∈ X. Therefore f is order-preserving.
For the second relation,

f̂(y) �X f̂(y)

⇐⇒ f(f̂(y)) �Y y, ` f̂ residual of f
(J.48)
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for all y ∈ Y . Then

y1 �Y y2

=⇒ f(f̂(y1)) �Y y2 ` second relation

=⇒ f̂(y1) �X f̂(y2), ` f̂ residual of f

(J.49)

for all y1, y2 ∈ Y . Therefore f̂ is order-preserving.
⇐=

It holds that

f(x) �Y y

=⇒ f̂(f(x)) �X f̂(y) ` f̂ order-preserving

=⇒ x �X f̂(y) ` first relation

=⇒ f(x) �Y f(f̂(y)) ` f order-preserving
=⇒ f(x) �Y y, ` second relation

(J.50)

for all x ∈ X, y ∈ Y . Therefore f̂ is a residual of f .

Theorem J.51 (Residual is essentially unique). Let g, h : Y → X
both be residuals of f : X → Y . Then

g(y) ∼X h(y), (J.52)

for all y ∈ Y .

Proof. By definition,
g(y) �X h(y)

⇐⇒ f(g(y)) �Y y,
(J.53)

for all y ∈ Y . The latter holds by [Properties of a residuated function] (J.44).
Similarly,

h(y) �X g(y), (J.54)

for all y ∈ Y .
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J.4 Residuated functions and supremum

Definition J.55 (Upper-bound). An element s ∈ X is an upper-bound
of S ⊂ X, if

x �X s, (J.56)

for all x ∈ S.

Definition J.57 (Least upper-bound). An element s ∈ X is a least
upper-bound of S ⊂ X, if s is an upper-bound of S, and for any upper-
bound t ∈ X of S,

s �X t. (J.58)

Definition J.59 (Supremum). The supremum of a set in a set X is a
function supX : P(X)→ P(X), such that

supX(S) = {s ∈ X : s is a least upper-bound of S}. (J.60)

Theorem J.61 (Residuated property by suprema). Let f : X → Y .
Then f is residuated if and only if f is order-preserving,

supX
(←−
f (↓Y ({y}))

)
6= ∅, (J.62)

for all y ∈ Y , and

−→
f (supX(S)) ⊂ supY

(−→
f (S)

)
, (J.63)

for all S ⊂ X.

Proof.
=⇒ Order-preservation

The function f is order-preserving by [Properties of a residuated function]
(J.44).
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=⇒ Non-emptiness

By [Residuated property by preimages] (J.40), for each y ∈ Y , there exists
xy ∈ X, such that

←−
f (↓Y ({y})) = ↓X({xy}). (J.64)

It follows that
supX

(←−
f (↓Y ({y}))

)
= {xy} 6= ∅. (J.65)

=⇒ Upper-bound

Let s ∈ supX(S). Since s is an upper-bound of S,

x �X s, (J.66)

for all x ∈ S. Since f is order-preserving,

f(x) �Y f(s), (J.67)

for all x ∈ S. Therefore f(s) is an upper-bound of
−→
f (S).

=⇒ Least upper-bound

Let f̂ : Y → X be a residual of f , and y ∈ Y be an upper-bound of
−→
f (S). Then

f(x) �Y y, (J.68)

for all x ∈ S. Since f is residuated,

x �X f̂(y), (J.69)

for all x ∈ S. That is, f̂(y) is an upper-bound of S. Since s is a least upper-
bound of S,

s �X f̂(y). (J.70)

Since f is residuated,
f(s) �Y y. (J.71)

Therefore f(s) is a least upper-bound of
−→
f (S);

−→
f (supX(S)) ⊂ supX

(−→
f (S)

)
. (J.72)
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⇐= Order-preservation

Let f̂ : Y → X be such that

f̂(y) ∈ supX
(←−
f (↓Y ({y}))

)
. (J.73)

The function f̂ is well-defined, since by assumption

supX
(←−
f (↓Y ({y}))

)
6= ∅, (J.74)

for all y ∈ Y . Let y1, y2 ∈ Y be such that y1 �Y y2. Since supremum is an
upper-bound,

∀x ∈
←−
f (↓Y ({y2})) : x �X f̂(y2)

=⇒ ∀x ∈ X :
[
f(x) �Y y2 =⇒ x �X f̂(y2)

]
=⇒ ∀x ∈ X :

[
f(x) �Y y1 =⇒ x �X f̂(y2)

]
=⇒ ∀x ∈

←−
f (↓Y ({y1})) : x �X f̂(y2).

(J.75)

That is, f̂(y2) is also an upper-bound of
←−
f (↓Y ({y1})). Since f̂(y1) is a least

upper-bound of
←−
f (↓Y ({y1})),

f̂(y1) �X f̂(y2). (J.76)

Therefore f̂ is order-preserving.
⇐= Deflation

Let y ∈ Y . By assumption,

f(f̂(y)) ∈
−→
f
(

supX
(←−
f (↓Y ({y}))

))
⊂ supY

(−→
f
(←−
f (↓Y ({y}))

))
⊂ supY (↓Y ({y}))
= {y}.

(J.77)

Therefore
f(f̂(y)) �Y y. (J.78)
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⇐= Inflation

Since x ∈
←−
f (↓Y ({f(x)})),

x �X f̂(f(x)), (J.79)

for all x ∈ X. Therefore f is residuated with residual f̂ by [Properties of a
residuated function] (J.44).

Theorem J.80 (Residual by supremum). Let f : X → Y be residuated.
Then f̂ : Y → X is a residual of f if and only if

f̂(y) ∈ supX
(←−
f (↓Y ({y}))

)
, (J.81)

for all y ∈ Y .

Proof. This is shown by [Residuated property by suprema] (J.61) and [Resid-
ual is essentially unique] (J.51).

J.5 Residuated functions and p-inverses

Theorem J.82 (Residual is a generalized p-inverse). Let f : X → Y
be residuated. Then

f(f̂(f(x))) ∼Y f(x),

f̂
(
f(f̂(y))

)
∼X f̂(y),

(J.83)

for all x ∈ X, y ∈ Y .

Proof. Let x ∈ X. It holds that

f(f̂(f(x))) �Y f(x), (J.84)

by [Properties of a residuated function] (J.44). By the same theorem,

f̂(f(x)) �X x. (J.85)

Since f is order-preserving by [Properties of a residuated function] (J.44),

f(f̂(f(x))) �Y f(x). (J.86)

Similarly for the second equivalence.
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Theorem J.87 (Residual is a right p-inverse for p-surjection). Let
f : X → Y be a p-surjection. Then a residual of f is a right p-inverse of f .

Proof. The function f is p-preserving by [Properties of a residuated function]
(J.44). A right p-inverse fR of f exists by [Partition-surjectivity is equivalent
to having a right p-inverse] (I.41). Let f̂ : Y → X be a residual of f . Then

y �Y y

=⇒ f(fR(y)) �Y y ` right p-inverse of f

=⇒ fR(y) �X f̂(y) ` f residuated

=⇒ f(fR(y)) �Y f(f̂(y)) ` f order-preserving

=⇒ y �Y f(f̂(y)) ` right p-inverse of f,

(J.88)

for all y ∈ Y . By [Properties of a residuated function] (J.44),

f(f̂(y)) �Y y, (J.89)

for all y ∈ Y . Therefore,
f(f̂(y)) ∼Y y, (J.90)

for all y ∈ Y . That is, f̂ is a right p-inverse of f .

Note J.91. A residuated p-surjection may have many non-equivalent right
p-inverses; a residual is a specific version of a right p-inverse. �

Theorem J.92 (Residual is a left p-inverse for residuated p-injec-
tion). Let f : X → Y be a residuated p-injection. Then a residual of f is
a left p-inverse of f .

Proof. This follows from [Residual is a generalized p-inverse] (J.82) and [Gen-
eralized partition-inverse is a left partition-inverse for a partition-injective
function] (I.19).

Theorem J.93 (Residual is a p-inverse for residuated p-bijection).
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Let f : X → Y be a residuated p-bijection. Then a residual of f is a p-
inverse of f .

Proof. This follows from [Residual is a left p-inverse for residuated p-injection]
(J.92) and [Residual is a right p-inverse for p-surjection] (J.87).

Theorem J.94 (Transpose-residuated p-surjective function pre-
serves down-sets). Let f : X → Y be �X-residuated and p-surjective.
Then −→

f (↓X({S})) = ↓Y
(−→
f (S)

)
, (J.95)

for all S ⊂ X.

Proof.
⊂

The function f is �X -order-preserving by [Properties of a residuated func-
tion] (J.44), which is the same as �X -order-preserving. The result follows from
[Order-preservation by images] (J.30).
⊃

Let f̂ : Y → X be a �X -residual of f , which is a right p-inverse of f by
[Residual is a right p-inverse for p-surjection] (J.87). Then

y ∈ ↓Y
(−→
f (S)

)
=⇒ ∃x ∈ S : y �Y f(x) ` definition of down-set

=⇒ ∃x ∈ S : f̂(y) �X x ` f̂ is �X -residual of f

=⇒ f̂(y) ∈ ↓X(S) ` definition of down-set

=⇒ f(f̂(y)) ∈
−→
f (↓X(S))

=⇒ y ∈
−→
f (↓X(S)), ` f̂ right p-inverse of f

(J.96)

for all S ⊂ X.
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Theorem J.97 (Transpose-residuated surjective function preserves
down-sets). Let f : X → Y be �X-residuated and surjective. Then

−→
f (↓X({S})) = ↓Y

(−→
f (S)

)
, (J.98)

for all S ⊂ X.

Proof. The proof is the same as [Transpose-residuated p-surjective function
preserves down-sets] (J.94), except that now we can choose the residual to be
both a right inverse and right p-inverse, and use the fact that

y = f(f̂(y)). (J.99)

J.6 Residuated functions and order-embeddings

Theorem J.100 (Residuated p-injection is order-embedding). Let
f : X → Y be a residuated p-injection. Then f is order-embedding.

Proof. Let f̂ : Y → X be a residual of f . Since f is p-injective, f̂ is a left p-
inverse of f by [Residual is a left p-inverse for residuated p-injection] (J.92).
Then

f(x1) �Y f(x2)

=⇒ x1 �X f̂(f(x2)) ` f̂ residual of f

=⇒ x1 �X x2, ` f̂ left p-inverse of f

(J.101)

for all x1, x2 ∈ X. Therefore f is order-reflecting. The function f is order-
preserving by [Properties of a residuated function] (J.44). Therefore f is
order-embedding.

Theorem J.102 (Residuated p-bijection is an order isomorphism).
Let f : X → Y . Then f is an order isomorphism if and only if f is a
residuated p-bijection.

Proof.
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=⇒

Since f is order-embedding, f is p-injective by [Order-reflecting implies par-
tition-injective] (J.17). Therefore f is p-bijective. Let fP : Y → X be a
p-preserving p-inverse of f , which exists by [Partition-bijectivity is equivalent
to having a p-preserving p-inverse] (I.50). Then

f(x) �Y y

⇐⇒ f(x) �Y f(fP (y)) ` fP p-inverse of f
⇐⇒ x �Y fP (y), ` f p-reflecting

(J.103)

for all x ∈ X and y ∈ Y . Therefore f is a residuated p-bijection.
⇐=

This follows from [Residuated p-injection is order-embedding] (J.100) and
because f is p-surjective.
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