
Algorithm analysis
O-notation

Prevailing definition
Implied properties

A general definition of the big oh notation for
algorithm analysis

Kalle Rutanen

Department of Mathematics
Tampere University of Technology

June 3, 2014

1 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Correctness analysis
Complexity analysis

Algorithm analysis

Algorithm

An algorithm is a finite sequence of instructions for transforming
data to another form, a process which can be followed with pen
and paper.

Example

An algorithm could provide a way to sort a sequence of integers in
increasing order. Then (0, 4, 2, 7) would be transformed to
(0, 2, 4, 7).

Algorithm analysis

Algorithm analysis studies the correctness and complexity of a
given algorithm.

2 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Correctness analysis
Complexity analysis

Algorithm analysis

Algorithm

An algorithm is a finite sequence of instructions for transforming
data to another form, a process which can be followed with pen
and paper.

Example

An algorithm could provide a way to sort a sequence of integers in
increasing order. Then (0, 4, 2, 7) would be transformed to
(0, 2, 4, 7).

Algorithm analysis

Algorithm analysis studies the correctness and complexity of a
given algorithm.

3 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Correctness analysis
Complexity analysis

Algorithm analysis

Algorithm

An algorithm is a finite sequence of instructions for transforming
data to another form, a process which can be followed with pen
and paper.

Example

An algorithm could provide a way to sort a sequence of integers in
increasing order. Then (0, 4, 2, 7) would be transformed to
(0, 2, 4, 7).

Algorithm analysis

Algorithm analysis studies the correctness and complexity of a
given algorithm.

4 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Correctness analysis
Complexity analysis

Algorithm analysis

Algorithm

An algorithm is a finite sequence of instructions for transforming
data to another form, a process which can be followed with pen
and paper.

Example

An algorithm could provide a way to sort a sequence of integers in
increasing order. Then (0, 4, 2, 7) would be transformed to
(0, 2, 4, 7).

Algorithm analysis

Algorithm analysis studies the correctness and complexity of a
given algorithm.

5 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Correctness analysis
Complexity analysis

Correctness analysis

Correctness analysis

Does the algorithm do what it is claimed to do?

Example of correctness

Prove that a given algorithm sorts any sequence of integers in
increasing order, and does so in finite time for a finite sequence.

6 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Correctness analysis
Complexity analysis

Correctness analysis

Correctness analysis

Does the algorithm do what it is claimed to do?

Example of correctness

Prove that a given algorithm sorts any sequence of integers in
increasing order, and does so in finite time for a finite sequence.

7 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Correctness analysis
Complexity analysis

Correctness analysis

Correctness analysis

Does the algorithm do what it is claimed to do?

Example of correctness

Prove that a given algorithm sorts any sequence of integers in
increasing order, and does so in finite time for a finite sequence.

8 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Correctness analysis
Complexity analysis

Complexity analysis

Complexity analysis

How much time / memory does it take to follow the algorithm on
a given input in the worst case / best case / average case (etc.)?

Example of complexity

Prove that a given algorithm never uses more than n(n − 1)/2
number of order-comparisons to sort any sequence of n integers.

9 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Correctness analysis
Complexity analysis

Complexity analysis

Complexity analysis

How much time / memory does it take to follow the algorithm on
a given input in the worst case / best case / average case (etc.)?

Example of complexity

Prove that a given algorithm never uses more than n(n − 1)/2
number of order-comparisons to sort any sequence of n integers.

10 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Correctness analysis
Complexity analysis

Complexity analysis

Complexity analysis

How much time / memory does it take to follow the algorithm on
a given input in the worst case / best case / average case (etc.)?

Example of complexity

Prove that a given algorithm never uses more than n(n − 1)/2
number of order-comparisons to sort any sequence of n integers.

11 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

O-notation

Motivation

Detailed complexity analysis is not interesting; big-picture scaling
behaviour is.

Example

A given algorithm to sort a sequence of n integers is analyzed to
take 6n2 + 5n + 37 comparisons in the worst case.

Scaling behavior

This is sometimes interesting. However, more interesting is that
the algorithm’s complexity scales like n2.

Simplification

The O-notation formalizes this scales-like simplification.

12 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

O-notation

Motivation

Detailed complexity analysis is not interesting; big-picture scaling
behaviour is.

Example

A given algorithm to sort a sequence of n integers is analyzed to
take 6n2 + 5n + 37 comparisons in the worst case.

Scaling behavior

This is sometimes interesting. However, more interesting is that
the algorithm’s complexity scales like n2.

Simplification

The O-notation formalizes this scales-like simplification.

13 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

O-notation

Motivation

Detailed complexity analysis is not interesting; big-picture scaling
behaviour is.

Example

A given algorithm to sort a sequence of n integers is analyzed to
take 6n2 + 5n + 37 comparisons in the worst case.

Scaling behavior

This is sometimes interesting. However, more interesting is that
the algorithm’s complexity scales like n2.

Simplification

The O-notation formalizes this scales-like simplification.

14 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

O-notation

Motivation

Detailed complexity analysis is not interesting; big-picture scaling
behaviour is.

Example

A given algorithm to sort a sequence of n integers is analyzed to
take 6n2 + 5n + 37 comparisons in the worst case.

Scaling behavior

This is sometimes interesting. However, more interesting is that
the algorithm’s complexity scales like n2.

Simplification

The O-notation formalizes this scales-like simplification.

15 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

O-notation

Motivation

Detailed complexity analysis is not interesting; big-picture scaling
behaviour is.

Example

A given algorithm to sort a sequence of n integers is analyzed to
take 6n2 + 5n + 37 comparisons in the worst case.

Scaling behavior

This is sometimes interesting. However, more interesting is that
the algorithm’s complexity scales like n2.

Simplification

The O-notation formalizes this scales-like simplification.

16 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Definition

Definition

An O-notation in a set X is a function OX : FX → P(FX), where
FX = X → R≥0, such that it fulfills the primitive properties.

Example

To formalize our earlier example, (6n2 + 5n + 37) ∈ ON
(
n2
)
.

Intuition

The set OX (f) contains those functions in FX which do not scale
worse than f .

17 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Definition

Definition

An O-notation in a set X is a function OX : FX → P(FX), where
FX = X → R≥0, such that it fulfills the primitive properties.

Example

To formalize our earlier example, (6n2 + 5n + 37) ∈ ON
(
n2
)
.

Intuition

The set OX (f) contains those functions in FX which do not scale
worse than f .

18 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Definition

Definition

An O-notation in a set X is a function OX : FX → P(FX), where
FX = X → R≥0, such that it fulfills the primitive properties.

Example

To formalize our earlier example, (6n2 + 5n + 37) ∈ ON
(
n2
)
.

Intuition

The set OX (f) contains those functions in FX which do not scale
worse than f .

19 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Definition

Definition

An O-notation in a set X is a function OX : FX → P(FX), where
FX = X → R≥0, such that it fulfills the primitive properties.

Example

To formalize our earlier example, (6n2 + 5n + 37) ∈ ON
(
n2
)
.

Intuition

The set OX (f) contains those functions in FX which do not scale
worse than f .

20 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Separate concepts

The O-notation used in pure mathematics is a concept separate
from the O-notation in algorithm analysis; they have different
properties.

21 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Positive scale-invariance

Definition

OX (αf) = OX (f) (∀α ∈ R>0, f ∈ FX)

Intuition

Positive constant factors are not interesting when comparing
scaling behaviour.

Example

ON
(
6n2
)

= ON
(
n2
)

22 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Positive scale-invariance

Definition

OX (αf) = OX (f) (∀α ∈ R>0, f ∈ FX)

Intuition

Positive constant factors are not interesting when comparing
scaling behaviour.

Example

ON
(
6n2
)

= ON
(
n2
)

23 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Positive scale-invariance

Definition

OX (αf) = OX (f) (∀α ∈ R>0, f ∈ FX)

Intuition

Positive constant factors are not interesting when comparing
scaling behaviour.

Example

ON
(
6n2
)

= ON
(
n2
)

24 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Positive scale-invariance

Definition

OX (αf) = OX (f) (∀α ∈ R>0, f ∈ FX)

Intuition

Positive constant factors are not interesting when comparing
scaling behaviour.

Example

ON
(
6n2
)

= ON
(
n2
)

25 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Reflexivity

Definition

f ∈ OX (f) ∀f ∈ FX

Intuition

A function does not scale worse than itself.

Example

n ∈ ON(n)

26 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Reflexivity

Definition

f ∈ OX (f) ∀f ∈ FX

Intuition

A function does not scale worse than itself.

Example

n ∈ ON(n)

27 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Reflexivity

Definition

f ∈ OX (f) ∀f ∈ FX

Intuition

A function does not scale worse than itself.

Example

n ∈ ON(n)

28 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Reflexivity

Definition

f ∈ OX (f) ∀f ∈ FX

Intuition

A function does not scale worse than itself.

Example

n ∈ ON(n)

29 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Transitivity

Definition

f ∈ OX (g) and g ∈ OX (h)⇒ f ∈ OX (h) ∀f , g , h ∈ FX

Intuition

If f does not scale worse than g , and g does not scale worse than
h, then f does not scale worse than h.

Example

n ∈ ON
(
n2
)
and n2 ∈ ON

(
n3
)
⇒ n ∈ ON

(
n3
)
.

30 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Transitivity

Definition

f ∈ OX (g) and g ∈ OX (h)⇒ f ∈ OX (h) ∀f , g , h ∈ FX

Intuition

If f does not scale worse than g , and g does not scale worse than
h, then f does not scale worse than h.

Example

n ∈ ON
(
n2
)
and n2 ∈ ON

(
n3
)
⇒ n ∈ ON

(
n3
)
.

31 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Transitivity

Definition

f ∈ OX (g) and g ∈ OX (h)⇒ f ∈ OX (h) ∀f , g , h ∈ FX

Intuition

If f does not scale worse than g , and g does not scale worse than
h, then f does not scale worse than h.

Example

n ∈ ON
(
n2
)
and n2 ∈ ON

(
n3
)
⇒ n ∈ ON

(
n3
)
.

32 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Transitivity

Definition

f ∈ OX (g) and g ∈ OX (h)⇒ f ∈ OX (h) ∀f , g , h ∈ FX

Intuition

If f does not scale worse than g , and g does not scale worse than
h, then f does not scale worse than h.

Example

n ∈ ON
(
n2
)
and n2 ∈ ON

(
n3
)
⇒ n ∈ ON

(
n3
)
.

33 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Order-consistency

Definition

f ≤ g ⇒ OX (f) ⊂ OX (g) ∀f , g ∈ FX

Intuition

If all values of f are at most that of g , then those functions which
do not scale worse than f do not scale worse than g either

Examples

OX (0) ⊂ OX (f) ∀f ∈ FX

OR≥1(xα) ⊂ OR≥1

(
xβ
)

∀α, β ∈ R≥0 : α ≤ β
OR≥1

(
1

αe loge(β) logβ(x)
)
⊂ OR≥1(xα) ∀α, β ∈ R>0

34 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Order-consistency

Definition

f ≤ g ⇒ OX (f) ⊂ OX (g) ∀f , g ∈ FX

Intuition

If all values of f are at most that of g , then those functions which
do not scale worse than f do not scale worse than g either

Examples

OX (0) ⊂ OX (f) ∀f ∈ FX

OR≥1(xα) ⊂ OR≥1

(
xβ
)

∀α, β ∈ R≥0 : α ≤ β
OR≥1

(
1

αe loge(β) logβ(x)
)
⊂ OR≥1(xα) ∀α, β ∈ R>0

35 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Order-consistency

Definition

f ≤ g ⇒ OX (f) ⊂ OX (g) ∀f , g ∈ FX

Intuition

If all values of f are at most that of g , then those functions which
do not scale worse than f do not scale worse than g either

Examples

OX (0) ⊂ OX (f) ∀f ∈ FX

OR≥1(xα) ⊂ OR≥1

(
xβ
)

∀α, β ∈ R≥0 : α ≤ β
OR≥1

(
1

αe loge(β) logβ(x)
)
⊂ OR≥1(xα) ∀α, β ∈ R>0

36 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Order-consistency

Definition

f ≤ g ⇒ OX (f) ⊂ OX (g) ∀f , g ∈ FX

Intuition

If all values of f are at most that of g , then those functions which
do not scale worse than f do not scale worse than g either

Examples

OX (0) ⊂ OX (f) ∀f ∈ FX

OR≥1(xα) ⊂ OR≥1

(
xβ
)

∀α, β ∈ R≥0 : α ≤ β
OR≥1

(
1

αe loge(β) logβ(x)
)
⊂ OR≥1(xα) ∀α, β ∈ R>0

37 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Order-consistency

Definition

f ≤ g ⇒ OX (f) ⊂ OX (g) ∀f , g ∈ FX

Intuition

If all values of f are at most that of g , then those functions which
do not scale worse than f do not scale worse than g either

Examples

OX (0) ⊂ OX (f) ∀f ∈ FX

OR≥1(xα) ⊂ OR≥1

(
xβ
)

∀α, β ∈ R≥0 : α ≤ β
OR≥1

(
1

αe loge(β) logβ(x)
)
⊂ OR≥1(xα) ∀α, β ∈ R>0

38 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Order-consistency

Definition

f ≤ g ⇒ OX (f) ⊂ OX (g) ∀f , g ∈ FX

Intuition

If all values of f are at most that of g , then those functions which
do not scale worse than f do not scale worse than g either

Examples

OX (0) ⊂ OX (f) ∀f ∈ FX

OR≥1(xα) ⊂ OR≥1

(
xβ
)

∀α, β ∈ R≥0 : α ≤ β

OR≥1

(
1

αe loge(β) logβ(x)
)
⊂ OR≥1(xα) ∀α, β ∈ R>0

39 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Order-consistency

Definition

f ≤ g ⇒ OX (f) ⊂ OX (g) ∀f , g ∈ FX

Intuition

If all values of f are at most that of g , then those functions which
do not scale worse than f do not scale worse than g either

Examples

OX (0) ⊂ OX (f) ∀f ∈ FX

OR≥1(xα) ⊂ OR≥1

(
xβ
)

∀α, β ∈ R≥0 : α ≤ β
OR≥1

(
1

αe loge(β) logβ(x)
)
⊂ OR≥1(xα) ∀α, β ∈ R>0

40 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Multiplicativity

Definition

OX (f)OX (g) = OX (fg) ∀f , g ∈ FX

Intuition

The product of a function which does not scale worse than f and a
function which does not scale worse than g does not scale worse
than fg . Every function in OX (fg) is a product of such functions.

Examples

ON(n)ON
(
n2
)

= ON
(
n3
)

OR>0(1/x)OR>0(x) = OR>0(1)

41 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Multiplicativity

Definition

OX (f)OX (g) = OX (fg) ∀f , g ∈ FX

Intuition

The product of a function which does not scale worse than f and a
function which does not scale worse than g does not scale worse
than fg . Every function in OX (fg) is a product of such functions.

Examples

ON(n)ON
(
n2
)

= ON
(
n3
)

OR>0(1/x)OR>0(x) = OR>0(1)

42 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Multiplicativity

Definition

OX (f)OX (g) = OX (fg) ∀f , g ∈ FX

Intuition

The product of a function which does not scale worse than f and a
function which does not scale worse than g does not scale worse
than fg . Every function in OX (fg) is a product of such functions.

Examples

ON(n)ON
(
n2
)

= ON
(
n3
)

OR>0(1/x)OR>0(x) = OR>0(1)

43 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Multiplicativity

Definition

OX (f)OX (g) = OX (fg) ∀f , g ∈ FX

Intuition

The product of a function which does not scale worse than f and a
function which does not scale worse than g does not scale worse
than fg . Every function in OX (fg) is a product of such functions.

Examples

ON(n)ON
(
n2
)

= ON
(
n3
)

OR>0(1/x)OR>0(x) = OR>0(1)

44 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Multiplicativity

Definition

OX (f)OX (g) = OX (fg) ∀f , g ∈ FX

Intuition

The product of a function which does not scale worse than f and a
function which does not scale worse than g does not scale worse
than fg . Every function in OX (fg) is a product of such functions.

Examples

ON(n)ON
(
n2
)

= ON
(
n3
)

OR>0(1/x)OR>0(x) = OR>0(1)

45 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Multiplicativity

Definition

OX (f)OX (g) = OX (fg) ∀f , g ∈ FX

Intuition

The product of a function which does not scale worse than f and a
function which does not scale worse than g does not scale worse
than fg . Every function in OX (fg) is a product of such functions.

Examples

ON(n)ON
(
n2
)

= ON
(
n3
)

OR>0(1/x)OR>0(x) = OR>0(1)

46 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Locality

Definition

f ∈ OX (g)⇔ ∀D ∈ C : (f |D) ∈ OD(g |D)
∀f , g ∈ FX ,C ⊂ P(X) : C is a finite cover of X .

Intuition

An f does not scale worse than g if and only if that holds when
restricted to a set of a finite cover, for all such sets.

47 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Locality

Definition

f ∈ OX (g)⇔ ∀D ∈ C : (f |D) ∈ OD(g |D)
∀f , g ∈ FX ,C ⊂ P(X) : C is a finite cover of X .

Intuition

An f does not scale worse than g if and only if that holds when
restricted to a set of a finite cover, for all such sets.

48 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Locality

Definition

f ∈ OX (g)⇔ ∀D ∈ C : (f |D) ∈ OD(g |D)
∀f , g ∈ FX ,C ⊂ P(X) : C is a finite cover of X .

Intuition

An f does not scale worse than g if and only if that holds when
restricted to a set of a finite cover, for all such sets.

49 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Zero-separation

Definition

OX (1) 6⊂ OX (0)

Intuition

There exists a function which scales worse than 0, but does not
scale worse than 1.

50 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Zero-separation

Definition

OX (1) 6⊂ OX (0)

Intuition

There exists a function which scales worse than 0, but does not
scale worse than 1.

51 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Zero-separation

Definition

OX (1) 6⊂ OX (0)

Intuition

There exists a function which scales worse than 0, but does not
scale worse than 1.

52 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

One-separation

Definition

ON>0(n) 6⊂ ON>0(1)

Intuition

There exists a function which scales worse than 1, but does not
scale worse than n.

53 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

One-separation

Definition

ON>0(n) 6⊂ ON>0(1)

Intuition

There exists a function which scales worse than 1, but does not
scale worse than n.

54 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

One-separation

Definition

ON>0(n) 6⊂ ON>0(1)

Intuition

There exists a function which scales worse than 1, but does not
scale worse than n.

55 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Composition rule

Definition

OX (f) ◦ s ⊂ OY (f ◦ s) ∀f ∈ FX , s : Y → X .

Intuition

A function which does not scale worse than f , mapped through s,
does not scale worse than f mapped through s.

56 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Composition rule

Definition

OX (f) ◦ s ⊂ OY (f ◦ s) ∀f ∈ FX , s : Y → X .

Intuition

A function which does not scale worse than f , mapped through s,
does not scale worse than f mapped through s.

57 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Composition rule

Definition

OX (f) ◦ s ⊂ OY (f ◦ s) ∀f ∈ FX , s : Y → X .

Intuition

A function which does not scale worse than f , mapped through s,
does not scale worse than f mapped through s.

58 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Uniqueness and existence

Primitive properties

The given properties are called the primitive properties.

Existence

There exists a function O with the primitive properties.

Uniqueness

There exists at most one function O with the primitive properties.

Explicit definition

f ∈ OX (g) :⇔ ∃c ∈ R>0 : f ≤ cg

59 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Uniqueness and existence

Primitive properties

The given properties are called the primitive properties.

Existence

There exists a function O with the primitive properties.

Uniqueness

There exists at most one function O with the primitive properties.

Explicit definition

f ∈ OX (g) :⇔ ∃c ∈ R>0 : f ≤ cg

60 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Uniqueness and existence

Primitive properties

The given properties are called the primitive properties.

Existence

There exists a function O with the primitive properties.

Uniqueness

There exists at most one function O with the primitive properties.

Explicit definition

f ∈ OX (g) :⇔ ∃c ∈ R>0 : f ≤ cg

61 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Uniqueness and existence

Primitive properties

The given properties are called the primitive properties.

Existence

There exists a function O with the primitive properties.

Uniqueness

There exists at most one function O with the primitive properties.

Explicit definition

f ∈ OX (g) :⇔ ∃c ∈ R>0 : f ≤ cg

62 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
Primitive properties
Uniqueness and existence

Uniqueness and existence

Primitive properties

The given properties are called the primitive properties.

Existence

There exists a function O with the primitive properties.

Uniqueness

There exists at most one function O with the primitive properties.

Explicit definition

f ∈ OX (g) :⇔ ∃c ∈ R>0 : f ≤ cg

63 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

Prevailing definition

Definition

f ∈ OX (g) :⇔ ∃c ∈ R>0, y ∈ X : (f |X≥y) ≤ c(g |X≥y)
where X ⊂ Rd and d ∈ N.

Problem

Our definition is different to the prevailing definition, which has
been used for decades. Is there something wrong with the
prevailing definition?

Solution

The prevailing definition fulfills all of the primitive properties,
except for the composition rule!

64 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

Prevailing definition

Definition

f ∈ OX (g) :⇔ ∃c ∈ R>0, y ∈ X : (f |X≥y) ≤ c(g |X≥y)
where X ⊂ Rd and d ∈ N.

Problem

Our definition is different to the prevailing definition, which has
been used for decades. Is there something wrong with the
prevailing definition?

Solution

The prevailing definition fulfills all of the primitive properties,
except for the composition rule!

65 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

Prevailing definition

Definition

f ∈ OX (g) :⇔ ∃c ∈ R>0, y ∈ X : (f |X≥y) ≤ c(g |X≥y)
where X ⊂ Rd and d ∈ N.

Problem

Our definition is different to the prevailing definition, which has
been used for decades. Is there something wrong with the
prevailing definition?

Solution

The prevailing definition fulfills all of the primitive properties,
except for the composition rule!

66 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

Prevailing definition

Definition

f ∈ OX (g) :⇔ ∃c ∈ R>0, y ∈ X : (f |X≥y) ≤ c(g |X≥y)
where X ⊂ Rd and d ∈ N.

Problem

Our definition is different to the prevailing definition, which has
been used for decades. Is there something wrong with the
prevailing definition?

Solution

The prevailing definition fulfills all of the primitive properties,
except for the composition rule!

67 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

Fundamental

The composition rule is fundamental; without it the complexity
analysis of an algorithm cannot be approached by dividing it into
parts, and studying the complexity of each part.

68 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

An example of failure

Algorithm 1 An algorithm which takes as input (m, n) ∈ N2, and
has time-complexity ON2(1) according to the prevailing definition.

1: procedure constantComplexity(m, n)
2: j ← 0
3: if m = 0 then
4: for i ∈ [0, n] do
5: j ← j + 1
6: end for
7: end if
8: return j
9: end procedure

69 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

An example of failure

Algorithm 2 An algorithm which takes as input (m, n) ∈ N2, and
has time-complexity ON2(1) according to the prevailing definition.

1: procedure constantComplexity(m, n)
2: j ← 0
3: if m = 0 then
4: for i ∈ [0, n] do
5: j ← j + 1
6: end for
7: end if
8: return j
9: end procedure

70 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

Algorithm 3 An algorithm which takes as input n ∈ N, and calls
another ON2(1) algorithm n times with varying arguments.

1: procedure basicAnalysis(n)
2: for i ∈ [0, n) do
3: constantComplexity(0, i)
4: end for
5: end procedure

Composition

Computed via the composition rule, the complexity of this
algorithm is ON(n).

Substitution

Computed via substitution, the complexity of this algorithm is
ON
(
n2
)
. A contradiction!

71 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

Algorithm 4 An algorithm which takes as input n ∈ N, and calls
another ON2(1) algorithm n times with varying arguments.

1: procedure basicAnalysis(n)
2: for i ∈ [0, n) do
3: constantComplexity(0, i)
4: end for
5: end procedure

Composition

Computed via the composition rule, the complexity of this
algorithm is ON(n).

Substitution

Computed via substitution, the complexity of this algorithm is
ON
(
n2
)
. A contradiction!

72 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

Algorithm 5 An algorithm which takes as input n ∈ N, and calls
another ON2(1) algorithm n times with varying arguments.

1: procedure basicAnalysis(n)
2: for i ∈ [0, n) do
3: constantComplexity(0, i)
4: end for
5: end procedure

Composition

Computed via the composition rule, the complexity of this
algorithm is ON(n).

Substitution

Computed via substitution, the complexity of this algorithm is
ON
(
n2
)
. A contradiction!

73 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

Characterization of failure

Theorem (Asymptotic composition rule)

Let X ⊂ Rd1 , Y ⊂ Rd2 , and s : Y → X . The composition rule
holds for s under the prevailing definition if and only if

∀x∗ ∈ X : ∃y∗ ∈ Y : s(Y≥y
∗
) ⊂ X≥x

∗
. (1)

Subset-sum

Since the subset-sum rule implies the composition rule, the former
does not hold for the prevailing definition either.

Subset-sum or composition

Actually, assuming the other properties, the composition rule and
the subset-sum rule are equivalent.

74 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

Characterization of failure

Theorem (Asymptotic composition rule)

Let X ⊂ Rd1 , Y ⊂ Rd2 , and s : Y → X . The composition rule
holds for s under the prevailing definition if and only if

∀x∗ ∈ X : ∃y∗ ∈ Y : s(Y≥y
∗
) ⊂ X≥x

∗
. (1)

Subset-sum

Since the subset-sum rule implies the composition rule, the former
does not hold for the prevailing definition either.

Subset-sum or composition

Actually, assuming the other properties, the composition rule and
the subset-sum rule are equivalent.

75 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

Characterization of failure

Theorem (Asymptotic composition rule)

Let X ⊂ Rd1 , Y ⊂ Rd2 , and s : Y → X . The composition rule
holds for s under the prevailing definition if and only if

∀x∗ ∈ X : ∃y∗ ∈ Y : s(Y≥y
∗
) ⊂ X≥x

∗
. (1)

Subset-sum

Since the subset-sum rule implies the composition rule, the former
does not hold for the prevailing definition either.

Subset-sum or composition

Actually, assuming the other properties, the composition rule and
the subset-sum rule are equivalent.

76 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Definition
An example of failure
Characterization of failure

Characterization of failure

Theorem (Asymptotic composition rule)

Let X ⊂ Rd1 , Y ⊂ Rd2 , and s : Y → X . The composition rule
holds for s under the prevailing definition if and only if

∀x∗ ∈ X : ∃y∗ ∈ Y : s(Y≥y
∗
) ⊂ X≥x

∗
. (1)

Subset-sum

Since the subset-sum rule implies the composition rule, the former
does not hold for the prevailing definition either.

Subset-sum or composition

Actually, assuming the other properties, the composition rule and
the subset-sum rule are equivalent.

77 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: OX (OX (f)) ⊃ OX (f)
Idempotence: OX (OX (f)) = OX (f)
Membership rule: f ∈ OX (g)⇔ OX (f) ⊂ OX (g)
Bounded translation-invariance:
(∃β ∈ R>0 : f ≥ β)⇒ OX (f + α) = OX (f)
Positive homogenuity: αOX (f) = OX (αf)
Positive power-homogenuity: OX (f)α = OX (f α)
Additive consistency: uOX (f) + vOX (f) = (u + v)OX (f)
Multiplicative consistency: OX (f)uOX (f)v = OX (f)u+v

78 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: OX (OX (f)) ⊃ OX (f)
Idempotence: OX (OX (f)) = OX (f)
Membership rule: f ∈ OX (g)⇔ OX (f) ⊂ OX (g)
Bounded translation-invariance:
(∃β ∈ R>0 : f ≥ β)⇒ OX (f + α) = OX (f)
Positive homogenuity: αOX (f) = OX (αf)
Positive power-homogenuity: OX (f)α = OX (f α)
Additive consistency: uOX (f) + vOX (f) = (u + v)OX (f)
Multiplicative consistency: OX (f)uOX (f)v = OX (f)u+v

79 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: OX (OX (f)) ⊃ OX (f)
Idempotence: OX (OX (f)) = OX (f)
Membership rule: f ∈ OX (g)⇔ OX (f) ⊂ OX (g)
Bounded translation-invariance:
(∃β ∈ R>0 : f ≥ β)⇒ OX (f + α) = OX (f)
Positive homogenuity: αOX (f) = OX (αf)
Positive power-homogenuity: OX (f)α = OX (f α)
Additive consistency: uOX (f) + vOX (f) = (u + v)OX (f)
Multiplicative consistency: OX (f)uOX (f)v = OX (f)u+v

80 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: OX (OX (f)) ⊃ OX (f)

Idempotence: OX (OX (f)) = OX (f)
Membership rule: f ∈ OX (g)⇔ OX (f) ⊂ OX (g)
Bounded translation-invariance:
(∃β ∈ R>0 : f ≥ β)⇒ OX (f + α) = OX (f)
Positive homogenuity: αOX (f) = OX (αf)
Positive power-homogenuity: OX (f)α = OX (f α)
Additive consistency: uOX (f) + vOX (f) = (u + v)OX (f)
Multiplicative consistency: OX (f)uOX (f)v = OX (f)u+v

81 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: OX (OX (f)) ⊃ OX (f)
Idempotence: OX (OX (f)) = OX (f)

Membership rule: f ∈ OX (g)⇔ OX (f) ⊂ OX (g)
Bounded translation-invariance:
(∃β ∈ R>0 : f ≥ β)⇒ OX (f + α) = OX (f)
Positive homogenuity: αOX (f) = OX (αf)
Positive power-homogenuity: OX (f)α = OX (f α)
Additive consistency: uOX (f) + vOX (f) = (u + v)OX (f)
Multiplicative consistency: OX (f)uOX (f)v = OX (f)u+v

82 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: OX (OX (f)) ⊃ OX (f)
Idempotence: OX (OX (f)) = OX (f)
Membership rule: f ∈ OX (g)⇔ OX (f) ⊂ OX (g)

Bounded translation-invariance:
(∃β ∈ R>0 : f ≥ β)⇒ OX (f + α) = OX (f)
Positive homogenuity: αOX (f) = OX (αf)
Positive power-homogenuity: OX (f)α = OX (f α)
Additive consistency: uOX (f) + vOX (f) = (u + v)OX (f)
Multiplicative consistency: OX (f)uOX (f)v = OX (f)u+v

83 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: OX (OX (f)) ⊃ OX (f)
Idempotence: OX (OX (f)) = OX (f)
Membership rule: f ∈ OX (g)⇔ OX (f) ⊂ OX (g)
Bounded translation-invariance:
(∃β ∈ R>0 : f ≥ β)⇒ OX (f + α) = OX (f)

Positive homogenuity: αOX (f) = OX (αf)
Positive power-homogenuity: OX (f)α = OX (f α)
Additive consistency: uOX (f) + vOX (f) = (u + v)OX (f)
Multiplicative consistency: OX (f)uOX (f)v = OX (f)u+v

84 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: OX (OX (f)) ⊃ OX (f)
Idempotence: OX (OX (f)) = OX (f)
Membership rule: f ∈ OX (g)⇔ OX (f) ⊂ OX (g)
Bounded translation-invariance:
(∃β ∈ R>0 : f ≥ β)⇒ OX (f + α) = OX (f)
Positive homogenuity: αOX (f) = OX (αf)

Positive power-homogenuity: OX (f)α = OX (f α)
Additive consistency: uOX (f) + vOX (f) = (u + v)OX (f)
Multiplicative consistency: OX (f)uOX (f)v = OX (f)u+v

85 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: OX (OX (f)) ⊃ OX (f)
Idempotence: OX (OX (f)) = OX (f)
Membership rule: f ∈ OX (g)⇔ OX (f) ⊂ OX (g)
Bounded translation-invariance:
(∃β ∈ R>0 : f ≥ β)⇒ OX (f + α) = OX (f)
Positive homogenuity: αOX (f) = OX (αf)
Positive power-homogenuity: OX (f)α = OX (f α)

Additive consistency: uOX (f) + vOX (f) = (u + v)OX (f)
Multiplicative consistency: OX (f)uOX (f)v = OX (f)u+v

86 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: OX (OX (f)) ⊃ OX (f)
Idempotence: OX (OX (f)) = OX (f)
Membership rule: f ∈ OX (g)⇔ OX (f) ⊂ OX (g)
Bounded translation-invariance:
(∃β ∈ R>0 : f ≥ β)⇒ OX (f + α) = OX (f)
Positive homogenuity: αOX (f) = OX (αf)
Positive power-homogenuity: OX (f)α = OX (f α)
Additive consistency: uOX (f) + vOX (f) = (u + v)OX (f)

Multiplicative consistency: OX (f)uOX (f)v = OX (f)u+v

87 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: OX (OX (f)) ⊃ OX (f)
Idempotence: OX (OX (f)) = OX (f)
Membership rule: f ∈ OX (g)⇔ OX (f) ⊂ OX (g)
Bounded translation-invariance:
(∃β ∈ R>0 : f ≥ β)⇒ OX (f + α) = OX (f)
Positive homogenuity: αOX (f) = OX (αf)
Positive power-homogenuity: OX (f)α = OX (f α)
Additive consistency: uOX (f) + vOX (f) = (u + v)OX (f)
Multiplicative consistency: OX (f)uOX (f)v = OX (f)u+v

88 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More implied properties

Maximum-consistency: max(OX (f),OX (f)) = OX (f)
Restriction rule: (OX (f)|D) = OD(f |D)
Additivity: OX (f) + OX (g) = OX (f + g)
Maximum rule: max(OX (f),OX (g)) = OX (max(f , g))
Summation rule: OX (f + g) = OX (max(f , g))
Maximum-sum rule: max(OX (f),OX (g)) = OX (f) + OX (g)
Injective composition rule: OX (f) ◦ s = OY (f ◦ s) (s injective)
Subset-sum rule:
f ∈ OY (g)⇒

(
x 7→

∑
y∈S(x) f (y)

)
∈ OX

(∑
y∈S(x) g(y)

)

89 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More implied properties

Maximum-consistency: max(OX (f),OX (f)) = OX (f)

Restriction rule: (OX (f)|D) = OD(f |D)
Additivity: OX (f) + OX (g) = OX (f + g)
Maximum rule: max(OX (f),OX (g)) = OX (max(f , g))
Summation rule: OX (f + g) = OX (max(f , g))
Maximum-sum rule: max(OX (f),OX (g)) = OX (f) + OX (g)
Injective composition rule: OX (f) ◦ s = OY (f ◦ s) (s injective)
Subset-sum rule:
f ∈ OY (g)⇒

(
x 7→

∑
y∈S(x) f (y)

)
∈ OX

(∑
y∈S(x) g(y)

)

90 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More implied properties

Maximum-consistency: max(OX (f),OX (f)) = OX (f)
Restriction rule: (OX (f)|D) = OD(f |D)

Additivity: OX (f) + OX (g) = OX (f + g)
Maximum rule: max(OX (f),OX (g)) = OX (max(f , g))
Summation rule: OX (f + g) = OX (max(f , g))
Maximum-sum rule: max(OX (f),OX (g)) = OX (f) + OX (g)
Injective composition rule: OX (f) ◦ s = OY (f ◦ s) (s injective)
Subset-sum rule:
f ∈ OY (g)⇒

(
x 7→

∑
y∈S(x) f (y)

)
∈ OX

(∑
y∈S(x) g(y)

)

91 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More implied properties

Maximum-consistency: max(OX (f),OX (f)) = OX (f)
Restriction rule: (OX (f)|D) = OD(f |D)
Additivity: OX (f) + OX (g) = OX (f + g)

Maximum rule: max(OX (f),OX (g)) = OX (max(f , g))
Summation rule: OX (f + g) = OX (max(f , g))
Maximum-sum rule: max(OX (f),OX (g)) = OX (f) + OX (g)
Injective composition rule: OX (f) ◦ s = OY (f ◦ s) (s injective)
Subset-sum rule:
f ∈ OY (g)⇒

(
x 7→

∑
y∈S(x) f (y)

)
∈ OX

(∑
y∈S(x) g(y)

)

92 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More implied properties

Maximum-consistency: max(OX (f),OX (f)) = OX (f)
Restriction rule: (OX (f)|D) = OD(f |D)
Additivity: OX (f) + OX (g) = OX (f + g)
Maximum rule: max(OX (f),OX (g)) = OX (max(f , g))

Summation rule: OX (f + g) = OX (max(f , g))
Maximum-sum rule: max(OX (f),OX (g)) = OX (f) + OX (g)
Injective composition rule: OX (f) ◦ s = OY (f ◦ s) (s injective)
Subset-sum rule:
f ∈ OY (g)⇒

(
x 7→

∑
y∈S(x) f (y)

)
∈ OX

(∑
y∈S(x) g(y)

)

93 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More implied properties

Maximum-consistency: max(OX (f),OX (f)) = OX (f)
Restriction rule: (OX (f)|D) = OD(f |D)
Additivity: OX (f) + OX (g) = OX (f + g)
Maximum rule: max(OX (f),OX (g)) = OX (max(f , g))
Summation rule: OX (f + g) = OX (max(f , g))

Maximum-sum rule: max(OX (f),OX (g)) = OX (f) + OX (g)
Injective composition rule: OX (f) ◦ s = OY (f ◦ s) (s injective)
Subset-sum rule:
f ∈ OY (g)⇒

(
x 7→

∑
y∈S(x) f (y)

)
∈ OX

(∑
y∈S(x) g(y)

)

94 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More implied properties

Maximum-consistency: max(OX (f),OX (f)) = OX (f)
Restriction rule: (OX (f)|D) = OD(f |D)
Additivity: OX (f) + OX (g) = OX (f + g)
Maximum rule: max(OX (f),OX (g)) = OX (max(f , g))
Summation rule: OX (f + g) = OX (max(f , g))
Maximum-sum rule: max(OX (f),OX (g)) = OX (f) + OX (g)

Injective composition rule: OX (f) ◦ s = OY (f ◦ s) (s injective)
Subset-sum rule:
f ∈ OY (g)⇒

(
x 7→

∑
y∈S(x) f (y)

)
∈ OX

(∑
y∈S(x) g(y)

)

95 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More implied properties

Maximum-consistency: max(OX (f),OX (f)) = OX (f)
Restriction rule: (OX (f)|D) = OD(f |D)
Additivity: OX (f) + OX (g) = OX (f + g)
Maximum rule: max(OX (f),OX (g)) = OX (max(f , g))
Summation rule: OX (f + g) = OX (max(f , g))
Maximum-sum rule: max(OX (f),OX (g)) = OX (f) + OX (g)
Injective composition rule: OX (f) ◦ s = OY (f ◦ s) (s injective)

Subset-sum rule:
f ∈ OY (g)⇒

(
x 7→

∑
y∈S(x) f (y)

)
∈ OX

(∑
y∈S(x) g(y)

)

96 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Implied properties

More implied properties

Maximum-consistency: max(OX (f),OX (f)) = OX (f)
Restriction rule: (OX (f)|D) = OD(f |D)
Additivity: OX (f) + OX (g) = OX (f + g)
Maximum rule: max(OX (f),OX (g)) = OX (max(f , g))
Summation rule: OX (f + g) = OX (max(f , g))
Maximum-sum rule: max(OX (f),OX (g)) = OX (f) + OX (g)
Injective composition rule: OX (f) ◦ s = OY (f ◦ s) (s injective)
Subset-sum rule:
f ∈ OY (g)⇒

(
x 7→

∑
y∈S(x) f (y)

)
∈ OX

(∑
y∈S(x) g(y)

)

97 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Prevailing definition

The prevailing definition fulfills all of the implied properties, except
for the subset-sum rule, and the injective composition rule.

98 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Relation definitions

Given the O-notation OX : FX → P(FX), we define the relations
�,�,≺,�,≈ ⊂ (FX × FX) such that

g � f ⇔ g ∈ OX (f),

g � f ⇔ f ∈ OX (g),

g ≺ f ⇔ f 6∈ OX (g) and g ∈ OX (f),

g � f ⇔ f ∈ OX (g) and g 6∈ OX (f),

g ≈ f ⇔ f ∈ OX (g) and g ∈ OX (f),

(2)

for all f , g ∈ FX .

99 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

Relation definitions

Using these relations, we define the traditional related notations
ΩX , oX , ωX ,ΘX : FX → P(FX) such that

ΩX (f) := {g ∈ FX : g � f },
oX (f) := {g ∈ FX : g ≺ f },
ωX (f) := {g ∈ FX : g � f },
ΘX (f) := {g ∈ FX : g ≈ f },

(3)

for all f ∈ FX .

100 / 101

Algorithm analysis
O-notation

Prevailing definition
Implied properties

The end. Questions? :)

101 / 101

	Algorithm analysis
	Correctness analysis
	Complexity analysis

	O-notation
	Definition
	Primitive properties
	Uniqueness and existence

	Prevailing definition
	Definition
	An example of failure
	Characterization of failure

	Implied properties

