A general definition of the big oh notation for algorithm analysis

Kalle Rutanen

Department of Mathematics Tampere University of Technology

June 3, 2014

[Algorithm analysis](#page-1-0)

O[-notation](#page-11-0) [Prevailing definition](#page-63-0) [Implied properties](#page-77-0)

[Complexity analysis](#page-8-0)

Algorithm analysis

[Correctness analysis](#page-5-0) [Complexity analysis](#page-8-0)

Algorithm analysis

Algorithm

An algorithm is a finite sequence of instructions for transforming data to another form, a process which can be followed with pen and paper.

[Correctness analysis](#page-5-0) [Complexity analysis](#page-8-0)

Algorithm analysis

Algorithm

An *algorithm* is a finite sequence of instructions for transforming data to another form, a process which can be followed with pen and paper.

Example

An algorithm could provide a way to sort a sequence of integers in increasing order. Then $(0, 4, 2, 7)$ would be transformed to $(0, 2, 4, 7)$.

[Correctness analysis](#page-5-0) [Complexity analysis](#page-8-0)

Algorithm analysis

Algorithm

An *algorithm* is a finite sequence of instructions for transforming data to another form, a process which can be followed with pen and paper.

Example

An algorithm could provide a way to sort a sequence of integers in increasing order. Then $(0, 4, 2, 7)$ would be transformed to $(0, 2, 4, 7)$.

Algorithm analysis

Algorithm analysis studies the correctness and complexity of a given algorithm.

[Correctness analysis](#page-7-0) [Complexity analysis](#page-8-0)

Correctness analysis

[Correctness analysis](#page-7-0) [Complexity analysis](#page-8-0)

Correctness analysis

Correctness analysis

Does the algorithm do what it is claimed to do?

[Correctness analysis](#page-5-0) [Complexity analysis](#page-8-0)

Correctness analysis

Correctness analysis

Does the algorithm do what it is claimed to do?

Example of correctness

Prove that a given algorithm sorts any sequence of integers in increasing order, and does so in finite time for a finite sequence.

[Algorithm analysis](#page-1-0)

O[-notation](#page-11-0) [Prevailing definition](#page-63-0) [Implied properties](#page-77-0)

[Correctness analysis](#page-5-0) [Complexity analysis](#page-10-0)

Complexity analysis

[Correctness analysis](#page-5-0) [Complexity analysis](#page-10-0)

Complexity analysis

Complexity analysis

How much time / memory does it take to follow the algorithm on a given input in the worst case / best case / average case (etc.)?

[Correctness analysis](#page-5-0) [Complexity analysis](#page-8-0)

Complexity analysis

Complexity analysis

How much time / memory does it take to follow the algorithm on a given input in the worst case / best case / average case (etc.)?

Example of complexity

Prove that a given algorithm never uses more than $n(n-1)/2$ number of order-comparisons to sort any sequence of *n* integers.

[Uniqueness and existence](#page-58-0)

O-notation

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

O-notation

Motivation

Detailed complexity analysis is not interesting; big-picture scaling behaviour is.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

O-notation

Motivation

Detailed complexity analysis is not interesting; big-picture scaling behaviour is.

Example

A given algorithm to sort a sequence of n integers is analyzed to take 6 $n^2 + 5n + 37$ comparisons in the worst case.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

O-notation

Motivation

Detailed complexity analysis is not interesting; big-picture scaling behaviour is.

Example

A given algorithm to sort a sequence of n integers is analyzed to take 6 $n^2 + 5n + 37$ comparisons in the worst case.

Scaling behavior

This is sometimes interesting. However, more interesting is that the algorithm's complexity scales like n^2 .

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

O-notation

Motivation

Detailed complexity analysis is not interesting; big-picture scaling behaviour is.

Example

A given algorithm to sort a sequence of n integers is analyzed to take 6 $n^2 + 5n + 37$ comparisons in the worst case.

Scaling behavior

This is sometimes interesting. However, more interesting is that the algorithm's complexity scales like n^2 .

Simplification

The O-notation formalizes this scales-like simplification.

[Definition](#page-19-0) [Uniqueness and existence](#page-58-0)

Definition

[Definition](#page-19-0) [Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Definition

Definition

An O-notation in a set X is a function $O_X : F_X \to \mathcal{P}(F_X)$, where $F_X = X \to \mathbb{R}^{\geq 0}$, such that it fulfills the primitive properties.

[Definition](#page-19-0) [Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Definition

Definition

An O-notation in a set X is a function $O_X : F_X \to \mathcal{P}(F_X)$, where $F_X = X \to \mathbb{R}^{\geq 0}$, such that it fulfills the primitive properties.

Example

To formalize our earlier example, $(6n^2+5n+37)\in O_{\mathbb{N}}(n^2)$.

[Definition](#page-16-0) [Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Definition

Definition

An O-notation in a set X is a function O_X : $F_X \to \mathcal{P}(F_X)$, where $F_X = X \to \mathbb{R}^{\geq 0}$, such that it fulfills the primitive properties.

Example

To formalize our earlier example, $(6n^2+5n+37)\in O_{\mathbb{N}}(n^2)$.

Intuition

The set $O_X(f)$ contains those functions in F_X which do not scale worse than f

[Definition](#page-16-0) [Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Separate concepts

The O-notation used in pure mathematics is a concept separate from the O-notation in algorithm analysis; they have different properties.

[Primitive properties](#page-24-0)

Positive scale-invariance

[Primitive properties](#page-24-0) [Uniqueness and existence](#page-58-0)

Positive scale-invariance

Definition

$O_X(\alpha f) = O_X(f)$ $>0, f \in F_X$

[Primitive properties](#page-24-0) [Uniqueness and existence](#page-58-0)

Positive scale-invariance

Definition

$$
O_X(\alpha f) = O_X(f) \qquad (\forall \alpha \in \mathbb{R}^{>0}, f \in F_X)
$$

Intuition

Positive constant factors are not interesting when comparing scaling behaviour.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Positive scale-invariance

Definition

$$
O_X(\alpha f) = O_X(f) \qquad (\forall \alpha \in \mathbb{R}^{>0}, \ f \in F_X)
$$

Intuition

Positive constant factors are not interesting when comparing scaling behaviour.

Example

$$
O_{\mathbb{N}}(6n^2) = O_{\mathbb{N}}(n^2)
$$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Reflexivity

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Reflexivity

Definition

 $f \in O_X(f)$ $\forall f \in F_X$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Reflexivity

Definition

$$
f\in O_X(f)\qquad \forall f\in F_X
$$

Intuition

A function does not scale worse than itself.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Reflexivity

Definition

 $f \in O_X(f)$ $\forall f \in F_X$

Intuition

A function does not scale worse than itself.

Example

 $n \in O_{\mathbb{N}}(n)$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Transitivity

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Transitivity

Definition

$f \in O_X(g)$ and $g \in O_X(h) \Rightarrow f \in O_X(h)$ $\forall f, g, h \in F_X$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Transitivity

Definition

 $f \in O_X(g)$ and $g \in O_X(h) \Rightarrow f \in O_X(h)$ $\forall f, g, h \in F_X$

Intuition

If f does not scale worse than g , and g does not scale worse than h, then f does not scale worse than h .

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Transitivity

Definition

 $f \in O_X(g)$ and $g \in O_X(h) \Rightarrow f \in O_X(h)$ $\forall f, g, h \in F_X$

Intuition

If f does not scale worse than g , and g does not scale worse than h, then f does not scale worse than h .

Example

$$
n\in O_{\mathbb{N}}(n^2)\text{ and }n^2\in O_{\mathbb{N}}(n^3)\Rightarrow n\in O_{\mathbb{N}}(n^3).
$$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Order-consistency

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Order-consistency

Definition

$f \leq g \Rightarrow O_X(f) \subset O_X(g) \quad \forall f, g \in F_X$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Order-consistency

Definition

$$
f\leq g\Rightarrow O_X(f)\subset O_X(g)\qquad \forall f,g\in F_X
$$

Intuition

If all values of f are at most that of g , then those functions which do not scale worse than f do not scale worse than g either
[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Order-consistency

Definition

$$
f\leq g\Rightarrow O_X(f)\subset O_X(g)\qquad \forall f,g\in F_X
$$

Intuition

If all values of f are at most that of g , then those functions which do not scale worse than f do not scale worse than g either

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Order-consistency

Definition

$$
f\leq g\Rightarrow O_X(f)\subset O_X(g)\qquad \forall f,g\in F_X
$$

Intuition

If all values of f are at most that of g , then those functions which do not scale worse than f do not scale worse than g either

Examples

 $O_X(0) \subset O_X(f)$ $\forall f \in F_X$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Order-consistency

Definition

$$
f\leq g\Rightarrow O_X(f)\subset O_X(g)\qquad \forall f,g\in F_X
$$

Intuition

If all values of f are at most that of g , then those functions which do not scale worse than f do not scale worse than g either

$$
O_X(0) \subset O_X(f) \qquad \forall f \in F_X
$$

\n
$$
O_{\mathbb{R}^{\geq 1}}(x^{\alpha}) \subset O_{\mathbb{R}^{\geq 1}}(x^{\beta}) \qquad \forall \alpha, \beta \in \mathbb{R}^{\geq 0} : \alpha \leq \beta
$$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Order-consistency

Definition

$$
f\leq g\Rightarrow O_X(f)\subset O_X(g)\qquad \forall f,g\in F_X
$$

Intuition

If all values of f are at most that of g , then those functions which do not scale worse than f do not scale worse than g either

$$
O_X(0) \subset O_X(f) \qquad \forall f \in F_X
$$

\n
$$
O_{\mathbb{R}^{\geq 1}}(x^{\alpha}) \subset O_{\mathbb{R}^{\geq 1}}(x^{\beta}) \qquad \forall \alpha, \beta \in \mathbb{R}^{\geq 0} : \alpha \leq \beta
$$

\n
$$
O_{\mathbb{R}^{\geq 1}}\left(\frac{1}{\alpha e \log_e(\beta)} \log_\beta(x)\right) \subset O_{\mathbb{R}^{\geq 1}}(x^{\alpha}) \qquad \forall \alpha, \beta \in \mathbb{R}^{>0}
$$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Multiplicativity

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Multiplicativity

Definition

$O_X(f)O_X(g) = O_X(fg)$ $\forall f, g \in F_X$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Multiplicativity

Definition

$$
O_X(f)O_X(g)=O_X(fg)\qquad \forall f,g\in F_X
$$

Intuition

The product of a function which does not scale worse than f and a function which does not scale worse than g does not scale worse than fg. Every function in $O_X(fg)$ is a product of such functions.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Multiplicativity

Definition

$$
O_X(f)O_X(g)=O_X(fg)\qquad \forall f,g\in F_X
$$

Intuition

The product of a function which does not scale worse than f and a function which does not scale worse than g does not scale worse than fg. Every function in $O_X(fg)$ is a product of such functions.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Multiplicativity

Definition

$$
O_X(f)O_X(g)=O_X(fg)\qquad \forall f,g\in F_X
$$

Intuition

The product of a function which does not scale worse than f and a function which does not scale worse than g does not scale worse than fg. Every function in $O_X(fg)$ is a product of such functions.

$$
O_{\mathbb{N}}(n)O_{\mathbb{N}}(n^2)=O_{\mathbb{N}}(n^3)
$$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Multiplicativity

Definition

$$
O_X(f)O_X(g)=O_X(fg)\qquad \forall f,g\in F_X
$$

Intuition

The product of a function which does not scale worse than f and a function which does not scale worse than g does not scale worse than fg. Every function in $O_X(fg)$ is a product of such functions.

$$
O_{\mathbb{N}}(n)O_{\mathbb{N}}(n^2)=O_{\mathbb{N}}(n^3)
$$

$$
O_{\mathbb{R}^{>0}}(1/x)O_{\mathbb{R}^{>0}}(x)=O_{\mathbb{R}^{>0}}(1)
$$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Locality

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Locality

Definition

 $f \in O_X(g) \Leftrightarrow \forall D \in C : (f|D) \in O_D(g|D)$ $\forall f, g \in F_X, C \subset \mathcal{P}(X)$: C is a finite cover of X.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Locality

Definition

 $f \in O_X(g) \Leftrightarrow \forall D \in C : (f|D) \in O_D(g|D)$ $\forall f, g \in F_X, C \subset \mathcal{P}(X)$: C is a finite cover of X.

Intuition

An f does not scale worse than g if and only if that holds when restricted to a set of a finite cover, for all such sets.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Zero-separation

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Zero-separation

Definition

 $O_X(1) \not\subset O_X(0)$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Zero-separation

Definition

 $O_X(1) \not\subset O_X(0)$

Intuition

There exists a function which scales worse than 0, but does not scale worse than 1.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

One-separation

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

One-separation

Definition

$$
O_{\mathbb{N}^{>0}}(n) \not\subset O_{\mathbb{N}^{>0}}(1)
$$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

One-separation

Definition

$$
O_{\mathbb{N}^{>0}}(n) \not\subset O_{\mathbb{N}^{>0}}(1)
$$

Intuition

There exists a function which scales worse than 1, but does not scale worse than *n*.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Composition rule

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Composition rule

Definition

$O_X(f) \circ s \subset O_Y(f \circ s)$ $\forall f \in F_X, s : Y \to X.$

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Composition rule

Definition

$O_X(f) \circ s \subset O_Y(f \circ s)$ $\forall f \in F_X, s: Y \to X.$

Intuition

A function which does not scale worse than f , mapped through s , does not scale worse than f mapped through s .

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-62-0)

Uniqueness and existence

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-62-0)

Uniqueness and existence

Primitive properties

The given properties are called the *primitive properties*.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-62-0)

Uniqueness and existence

Primitive properties

The given properties are called the *primitive properties*.

Existence

There exists a function O with the primitive properties.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-62-0)

Uniqueness and existence

Primitive properties

The given properties are called the *primitive properties*.

Existence

There exists a function O with the primitive properties.

Uniqueness

There exists at most one function O with the primitive properties.

[Primitive properties](#page-21-0) [Uniqueness and existence](#page-58-0)

Uniqueness and existence

Primitive properties

The given properties are called the *primitive properties*.

Existence

There exists a function O with the primitive properties.

Uniqueness

There exists at most one function O with the primitive properties.

Explicit definition

 $f\in\mathcal{O}_\mathsf{X}(g):\Leftrightarrow\exists\mathsf{c}\in\mathbb{R}^{>0}:f\leq\mathsf{c} g$

[Definition](#page-66-0) [An example of failure](#page-68-0) [Characterization of failure](#page-73-0)

Prevailing definition

[Definition](#page-66-0) [An example of failure](#page-68-0) [Characterization of failure](#page-73-0)

Prevailing definition

Definition

$$
f \in O_X(g) : \Leftrightarrow \exists c \in \mathbb{R}^{>0}, y \in X : (f|X^{\geq y}) \leq c(g|X^{\geq y})
$$

where $X \subset \mathbb{R}^d$ and $d \in \mathbb{N}$.

[Definition](#page-66-0) [An example of failure](#page-68-0) [Characterization of failure](#page-73-0)

Prevailing definition

Definition

$$
f \in O_X(g) : \Leftrightarrow \exists c \in \mathbb{R}^{>0}, y \in X : (f|X^{\geq y}) \leq c(g|X^{\geq y})
$$

where $X \subset \mathbb{R}^d$ and $d \in \mathbb{N}$.

Problem

Our definition is different to the prevailing definition, which has been used for decades. Is there something wrong with the prevailing definition?

[Definition](#page-63-0) [An example of failure](#page-68-0) [Characterization of failure](#page-73-0)

Prevailing definition

Definition

$$
f \in O_X(g) : \Leftrightarrow \exists c \in \mathbb{R}^{>0}, y \in X : (f|X^{\geq y}) \leq c(g|X^{\geq y})
$$

where $X \subset \mathbb{R}^d$ and $d \in \mathbb{N}$.

Problem

Our definition is different to the prevailing definition, which has been used for decades. Is there something wrong with the prevailing definition?

Solution

The prevailing definition fulfills all of the primitive properties, except for the composition rule!

[Definition](#page-63-0) [An example of failure](#page-68-0) [Characterization of failure](#page-73-0)

Fundamental

The composition rule is fundamental; without it the complexity analysis of an algorithm cannot be approached by dividing it into parts, and studying the complexity of each part.

[An example of failure](#page-69-0) [Characterization of failure](#page-73-0)

An example of failure

[Definition](#page-63-0) [An example of failure](#page-68-0) [Characterization of failure](#page-73-0)

An example of failure

Algorithm 2 An algorithm which takes as input $(m, n) \in \mathbb{N}^2$, and has time-complexity $O_{N^2}(1)$ according to the prevailing definition.

- 1: **procedure** CONSTANT COMPLEXITY (m, n)
- 2: $i \leftarrow 0$ 3: if $m = 0$ then 4: for $i \in [0, n]$ do 5: $j \leftarrow j + 1$ 6: end for $7 \cdot$ end if 8: return i 9: end procedure

[An example of failure](#page-68-0) [Characterization of failure](#page-73-0)

Algorithm 3 An algorithm which takes as input $n \in \mathbb{N}$, and calls another $O_{N^2}(1)$ algorithm *n* times with varying arguments.

- 1: **procedure** $\text{BASICANALYSIS}(n)$
- 2: for $i \in [0, n)$ do
- 3: $\text{CONSTANTCOMPLEXITY}(0, i)$
- 4: end for
- 5: end procedure

[An example of failure](#page-68-0) [Characterization of failure](#page-73-0)

Algorithm 4 An algorithm which takes as input $n \in \mathbb{N}$, and calls another $O_{N^2}(1)$ algorithm *n* times with varying arguments.

- 1: **procedure** $\text{BASICANALYSIS}(n)$
- 2: for $i \in [0, n)$ do
- 3: $\text{CONSTANTCOMPLEXITY}(0, i)$
- 4: end for
- 5: end procedure

Composition

Computed via the composition rule, the complexity of this algorithm is $O_{N}(n)$.
[Definition](#page-63-0) [An example of failure](#page-68-0) [Characterization of failure](#page-73-0)

Algorithm 5 An algorithm which takes as input $n \in \mathbb{N}$, and calls another $O_{N^2}(1)$ algorithm *n* times with varying arguments.

- 1: **procedure** $\text{BASICANALYSIS}(n)$
- 2: for $i \in [0, n)$ do
- 3: $\text{CONSTANTCOMPLEXITY}(0, i)$
- 4: end for
- 5: end procedure

Composition

Computed via the composition rule, the complexity of this algorithm is $O_{N}(n)$.

Substitution

Computed via substitution, the complexity of this algorithm is $O_{\mathbb{N}}(n^2)$. A contradiction!

[An example of failure](#page-68-0) [Characterization of failure](#page-76-0)

Characterization of failure

[Characterization of failure](#page-76-0)

Characterization of failure

Theorem (Asymptotic composition rule)

Let $X \subset \mathbb{R}^{d_1}$, $Y \subset \mathbb{R}^{d_2}$, and $s: Y \to X$. The composition rule holds for s under the prevailing definition if and only if

$$
\forall x^* \in X : \exists y^* \in Y : s(Y^{\geq y^*}) \subset X^{\geq x^*}.
$$
 (1)

[Definition](#page-63-0) [An example of failure](#page-68-0) [Characterization of failure](#page-76-0)

Characterization of failure

Theorem (Asymptotic composition rule)

Let $X \subset \mathbb{R}^{d_1}$, $Y \subset \mathbb{R}^{d_2}$, and $s: Y \to X$. The composition rule holds for s under the prevailing definition if and only if

$$
\forall x^* \in X : \exists y^* \in Y : s(Y^{\geq y^*}) \subset X^{\geq x^*}.
$$
 (1)

Subset-sum

Since the subset-sum rule implies the composition rule, the former does not hold for the prevailing definition either.

[Definition](#page-63-0) [An example of failure](#page-68-0) [Characterization of failure](#page-73-0)

Characterization of failure

Theorem (Asymptotic composition rule)

Let $X \subset \mathbb{R}^{d_1}$, $Y \subset \mathbb{R}^{d_2}$, and $s: Y \to X$. The composition rule holds for s under the prevailing definition if and only if

$$
\forall x^* \in X : \exists y^* \in Y : s(Y^{\geq y^*}) \subset X^{\geq x^*}.
$$
 (1)

Subset-sum

Since the subset-sum rule implies the composition rule, the former does not hold for the prevailing definition either.

Subset-sum or composition

Actually, assuming the other properties, the composition rule and the subset-sum rule are equivalent.

Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: $O_X(O_X(f)) \supset O_X(f)$

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: $O_X(O_X(f)) \supset O_X(f)$ Idempotence: $O_X(O_X(f)) = O_X(f)$

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: $O_X(O_X(f)) \supset O_X(f)$ Idempotence: $O_X(O_X(f)) = O_X(f)$ Membership rule: $f \in O_X(g) \Leftrightarrow O_X(f) \subset O_X(g)$

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: $O_X(O_X(f)) \supset O_X(f)$ Idempotence: $O_X(O_X(f)) = O_X(f)$ Membership rule: $f \in O_X(g) \Leftrightarrow O_X(f) \subset O_X(g)$ Bounded translation-invariance: $(\exists \beta \in \mathbb{R}^{>0}: f \geq \beta) \Rightarrow O_X(f + \alpha) = O_X(f)$

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: $O_X(O_X(f)) \supset O_X(f)$ Idempotence: $O_X(O_X(f)) = O_X(f)$ Membership rule: $f \in O_X(g) \Leftrightarrow O_X(f) \subset O_X(g)$ Bounded translation-invariance: $(\exists \beta \in \mathbb{R}^{>0}: f \geq \beta) \Rightarrow O_X(f + \alpha) = O_X(f)$ Positive homogenuity: $\alpha O_X(f) = O_X(\alpha f)$

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: $O_X(O_X(f)) \supset O_X(f)$ Idempotence: $O_X(O_X(f)) = O_X(f)$ Membership rule: $f \in O_X(g) \Leftrightarrow O_X(f) \subset O_X(g)$ Bounded translation-invariance: $(\exists \beta \in \mathbb{R}^{>0}: f \geq \beta) \Rightarrow O_X(f + \alpha) = O_X(f)$ Positive homogenuity: $\alpha O_X(f) = O_X(\alpha f)$ Positive power-homogenuity: $\hat{O}_X(f)^\alpha = \hat{O}_X(f^\alpha)$

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: $O_X(O_X(f)) \supset O_X(f)$ Idempotence: $O_X(O_X(f)) = O_X(f)$ Membership rule: $f \in O_X(g) \Leftrightarrow O_X(f) \subset O_X(g)$ Bounded translation-invariance: $(\exists \beta \in \mathbb{R}^{>0}: f \geq \beta) \Rightarrow O_X(f + \alpha) = O_X(f)$ Positive homogenuity: $\alpha O_X(f) = O_X(\alpha f)$ Positive power-homogenuity: $\hat{O}_X(f)^\alpha = \hat{O}_X(f^\alpha)$ Additive consistency: $uO_X(f) + vO_X(f) = (u + v)O_X(f)$

Implied properties

More properties

The following properties are implied by the primitive properties.

Implied properties

Monotonicity: $O_X(O_X(f)) \supset O_X(f)$ Idempotence: $O_X(O_X(f)) = O_X(f)$ Membership rule: $f \in O_X(g) \Leftrightarrow O_X(f) \subset O_X(g)$ Bounded translation-invariance: $(\exists \beta \in \mathbb{R}^{>0}: f \geq \beta) \Rightarrow O_X(f + \alpha) = O_X(f)$ Positive homogenuity: $\alpha O_X(f) = O_X(\alpha f)$ Positive power-homogenuity: $\hat{O}_X(f)^\alpha = \hat{O}_X(f^\alpha)$ Additive consistency: $uO_X(f) + vO_X(f) = (u + v)O_X(f)$ Multiplicative consistency: $O_X(f)^{\mu}O_X(f)^{\nu}=O_X(f)^{\mu+\nu}$

Implied properties

More implied properties

Implied properties

More implied properties

Maximum-consistency: max $(O_X(f), O_X(f)) = O_X(f)$

Implied properties

More implied properties

Maximum-consistency: max $(O_X(f), O_X(f)) = O_X(f)$ Restriction rule: $(O_X(f)|D) = O_D(f|D)$

Implied properties

More implied properties

Maximum-consistency: max $(O_X(f), O_X(f)) = O_X(f)$ Restriction rule: $(O_X(f)|D) = O_D(f|D)$ Additivity: $O_X(f) + O_X(g) = O_X(f + g)$

Implied properties

More implied properties

Maximum-consistency: max $(O_X(f), O_X(f)) = O_X(f)$ Restriction rule: $(O_X(f)|D) = O_D(f|D)$ Additivity: $O_X(f) + O_X(g) = O_X(f + g)$ Maximum rule: max $(O_X(f), O_X(g)) = O_X(max(f, g))$

Implied properties

More implied properties

Maximum-consistency: max $(O_X(f), O_X(f)) = O_X(f)$ Restriction rule: $(O_X(f)|D) = O_D(f|D)$ Additivity: $O_X(f) + O_X(g) = O_X(f + g)$ Maximum rule: max $(O_X(f), O_X(g)) = O_X(max(f, g))$ Summation rule: $O_X(f + g) = O_X(\max(f, g))$

Implied properties

More implied properties

Maximum-consistency: max $(O_X(f), O_X(f)) = O_X(f)$ Restriction rule: $(O_X(f)|D) = O_D(f|D)$ Additivity: $O_X(f) + O_X(g) = O_X(f + g)$ Maximum rule: max $(O_X(f), O_X(g)) = O_X(max(f, g))$ Summation rule: $O_X(f + g) = O_X(\max(f, g))$ Maximum-sum rule: max $(O_X(f), O_X(g)) = O_X(f) + O_X(g)$

Implied properties

More implied properties

Maximum-consistency: max $(O_X(f), O_X(f)) = O_X(f)$ Restriction rule: $(O_X(f)|D) = O_D(f|D)$ Additivity: $O_X(f) + O_X(g) = O_X(f + g)$ Maximum rule: max $(O_X(f), O_X(g)) = O_X(max(f, g))$ Summation rule: $O_X(f + g) = O_X(\max(f, g))$ Maximum-sum rule: max $(O_X(f), O_X(g)) = O_X(f) + O_X(g)$ Injective composition rule: $O_x(f) \circ s = O_y(f \circ s)$ (s injective)

Implied properties

More implied properties

Maximum-consistency: max $(O_X(f), O_X(f)) = O_X(f)$ Restriction rule: $(O_X(f)|D) = O_D(f|D)$ Additivity: $O_X(f) + O_X(g) = O_X(f + g)$ Maximum rule: max $(O_X(f), O_X(g)) = O_X(max(f, g))$ Summation rule: $O_X(f + g) = O_X(\max(f, g))$ Maximum-sum rule: max $(O_X(f), O_X(g)) = O_X(f) + O_X(g)$ Injective composition rule: $O_x(f) \circ s = O_y(f \circ s)$ (s injective) Subset-sum rule: $f \in O_Y(g) \Rightarrow \left(x \mapsto \sum_{y \in S(x)} f(y)\right) \in O_X\left(\sum_{y \in S(x)} g(y)\right)$

Prevailing definition

The prevailing definition fulfills all of the implied properties, except for the subset-sum rule, and the injective composition rule.

Relation definitions

Given the O-notation $O_X : F_X \to \mathcal{P}(F_X)$, we define the relations $\preceq, \succeq, \prec, \succ, \approx \subset (F_X \times F_X)$ such that

$$
g \preceq f \Leftrightarrow g \in O_X(f),
$$

\n
$$
g \succeq f \Leftrightarrow f \in O_X(g),
$$

\n
$$
g \prec f \Leftrightarrow f \notin O_X(g) \text{ and } g \in O_X(f),
$$

\n
$$
g \succ f \Leftrightarrow f \in O_X(g) \text{ and } g \notin O_X(f),
$$

\n
$$
g \approx f \Leftrightarrow f \in O_X(g) \text{ and } g \in O_X(f),
$$

\n(2)

for all $f, g \in F_X$.

Relation definitions

Using these relations, we define the traditional related notations Ω_X , o_X , ω_X , Θ_X : $F_X \to \mathcal{P}(F_X)$ such that

$$
\Omega_X(f) := \{ g \in F_X : g \succeq f \},\
$$

\n
$$
o_X(f) := \{ g \in F_X : g \prec f \},\
$$

\n
$$
\omega_X(f) := \{ g \in F_X : g \succ f \},\
$$

\n
$$
\Theta_X(f) := \{ g \in F_X : g \approx f \},\
$$
\n(3)

for all $f \in F_{\mathbf{Y}}$.

The end. Questions? :)