Back to Kozachenko-Leonenko estimator
// Description: differential_entropy_kl_t
// DocumentationOf: differential_entropy_kl_t.m
#include "tim/corematlab/tim_matlab.h"
#include "tim/core/differential_entropy_kl.h"
void force_linking_differential_entropy_kl_t() {};
using namespace Tim;
namespace
{
void matlabTemporalDifferentialEntropyKl(
int outputs, mxArray *outputSet[],
int inputs, const mxArray *inputSet[])
{
enum Input
{
X,
TimeWindowRadius,
KNearest,
FilterIndex,
Inputs
};
enum Output
{
Estimate,
Outputs
};
ENSURE_OP(inputs, ==, Inputs);
ENSURE_OP(outputs, ==, Outputs);
std::vector<MatlabMatrix<dreal>> xMatrices = matlabAsMatrixRange<dreal>(inputSet[X]) | ranges::to_vector;
std::vector<Signal> xSignals = matlabMatricesAsSignals(xMatrices) | ranges::to_vector;
integer timeWindowRadius = matlabAsScalar<integer>(inputSet[TimeWindowRadius]);
integer kNearest = matlabAsScalar<integer>(inputSet[KNearest]);
std::vector<dreal> filter;
matlabGetScalars(inputSet[FilterIndex], std::back_inserter(filter));
SignalData estimate = temporalDifferentialEntropyKl(
xSignals,
timeWindowRadius,
kNearest,
Default_Norm(),
filter);
integer nans = std::max(estimate.t(), (integer)0);
integer skip = std::max(-estimate.t(), (integer)0);
integer samples = std::max(nans + estimate.samples() - skip, (integer)0);
MatrixView<dreal> result = matlabCreateMatrix<dreal>(1, samples, outputSet[Estimate]);
ranges::fill(result.slicex(0, nans).range(), (dreal)Nan());
ranges::copy(
estimate.data().slicex(skip).range(),
std::begin(result.slicex(nans).range()));
}
void addFunction()
{
matlabAddFunction(
"differential_entropy_kl_t",
matlabTemporalDifferentialEntropyKl);
}
CallFunction run(addFunction);
}