Back to Nilsson-Kleijn estimator
% DIFFERENTIAL_ENTROPY_NK
% A differential entropy estimate from samples
% using Nilsson-Kleijn manifold nearest neighbor
% estimator.
%
% [H, d] = differential_entropy_nk(S)
%
% or
%
% H = differential_entropy_nk(S)
%
% where
%
% S is a signal set.
%
% H is the differential entropy estimate of a random distribution
% lieing on a d-dimensional differentiable manifold, where d is
% also estimated from the data and is an integer.
%
% Type 'help tim' for more documentation.
% Description: Differential entropy estimation
% Detail: Nilsson-Kleijn manifold nearest neighbor estimator
% Documentation: differential_entropy_nk.txt
function [H, d] = differential_entropy_nk(S)
import([tim_package, '.*']);
concept_check(nargin, 'inputs', 1);
concept_check(nargout, 'outputs', 0 : 2);
if isnumeric(S)
S = {S};
end
pastelmatlab.concept_check(S, tim_package('signal_set'));
[H, dOut] = tim_matlab(...
'differential_entropy_nk', ...
S);
if nargout > 1
d = dOut;
end